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bstract

The thermodynamic theory of solubility of molecular crystals in solvents is reviewed with an emphasis on solutes showing polymorphism as in
ase of many pharmaceuticals. The relation between solubility and binary phase diagrams of the solute solvent system is treated. The astonishing
ariety of possible solubility curves as a function of temperature is explained using simple models for the solution thermodynamics assuming no

ixing between the solvent and solute in the solid phase, though including the case of solvates or pseudo polymorphs. In passing a new method is

ntroduced that allows to estimate the transition temperature of enantiotropically related polymorphs from melting temperatures and enthalpies of
he polymorphs.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The first practical understanding of solubility dates back
o 1900–1930 (Hildebrand, 1916, 1929; Mortimer, 1922).
ince the introduction of the concept of a regular solution
y Hildebrand (1929), later resulting in the solubility param-
ter and Scatchard–Hildebrand theory of regular solutions,
umerous new models have been proposed in order to describe
he non-ideal behavior of solutions more correctly. Predic-
ive methods can be very useful tools to reduce the amount
f experiments needed to determine solubilities, and the
evelopment of reliable, transferable and quick methods is in
ontinuous progress (Gmehling, 2003a, b). Although it might
eem as if 1930 is long ago, the theories described before that
ate still contain the essentials of current solubility models.
odern models have astonishing capabilities, but they are not

omplete and experimental data are still needed. Especially for

ulticomponent mixtures, however, experimental methods are

ot only time-consuming (Gmehling, 2003a), but expensive
nd difficult as well.

∗ Corresponding author.
E-mail address: Hugo.Meekes@science.ru.nl (H. Meekes).

n

(
m
l
t
s

378-5173/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2007.09.021
rams

Compared to vapor liquid equilibria (VLE), much less atten-
ion has been given to SLE (solid liquid equilibria) and solubility,
ne of the reasons being the much larger importance of rectifi-
ation as compared to crystallization (Gmehling, 2003b; Jakob
t al., 1995). Still, SLE and solubility of solids in liquids are
f great interest: crystallization processes are used, e.g. for the
eparation and purification of thermo labile compounds or iso-
eric compounds with a very similar vapor pressure (Lohmann

t al., 1998). Moreover, the link between solid phase diagrams
nd solubility is rarely recognized in literature and certainly not
enerally known. Of course, for solubility behavior showing
omplete eutectic behavior, it is not so relevant to make this link,
ut when polymorphism occurs, phase diagrams are becoming
seful. Especially for pharmaceutical compounds both fields,
olubility of organic compounds in various solvents and poly-
orphism, have attained an increasing interest in recent years

s both are essential, for instance during the development of a
ew drug (Ruelle et al., 2000).

It is the aim of this paper to make the connection between
binary) phase diagrams and solubility starting from simple ther-

odynamics relevant for the solubility behavior of solids in

iquids and to apply it to the solubility of polymorphic forms. In
hat light it is not the aim to describe predictive models for the
olubility of molecular crystals but rather to use simple models to

mailto:Hugo.Meekes@science.ru.nl
dx.doi.org/10.1016/j.ijpharm.2007.09.021
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escribe the thermodynamics behind the astonishing variety of
olubility curves found in practical situations. The relation with
olymorphism of molecular crystals will be emphasized. Start-
ng from the simplest of all models, the ideal solution model,
he complexity of the models will be gradually increased, in all
ases limiting the analysis to the essentials.

The need for quantitative solubility data, on the other hand,
as led to a variety of models for predicting solubility, each with
ts specific emphasis; in the following a short overview is given.
he first widely applicable predictive model for solubility and
olutions is the regular solution theory (Gmehling, 2003a). This
ethod makes use of a single solubility parameter, which can

escribe the real behavior of mixtures of non-polar compounds
Prausnitz et al., 1999). A disadvantage is that the regular solu-
ion assumptions cannot describe mixtures of polar molecules,
nd although some empirical modifications can extend the use of
he regular solution model (Barton, 1975)(a well known example
s the Hansen solubility parameter approach (Hansen, 1969)),
t is in many cases replaced by more sophisticated methods.
owadays, the modified UNIFAC(Do) method (Lohmann et al.,
001) is in general the most used method available for pre-
ictions. In 1978 already it has been shown that the original
NIFAC is capable of predicting SLE and solubility (Gmehling

t al., 1978), but only for a limited number of compounds.
riginally, UNIFAC, being based on a large database of thermo-
ynamic data, was developed for VLE in the temperature range
90–400 K and predictions for SLE or below 290 K can lead
o poor results. To increase the temperature range, in modified
NIFAC(Do) the temperature dependence was incorporated and
LE data were used as supporting information, improving the
esults considerably (Lohmann et al., 2001). For simple com-
ounds, modified UNIFAC(Do) is a helpful tool for predicting
olubility (Eckert and Klamt, 2002), but for more complicated
olecules, other models have to be used. An example from the

harmaceutical field is the mobile-order-disorder theory, a rel-
tively unknown method that can describe solubility behavior
f complex drug-based molecules (Ruelle et al., 2000). Another
pcoming approach is predicting real solution behavior with
he help of quantum-chemical methods, such as COSMO-RS
Eckert and Klamt, 2002). Such models can describe more
ystems than database-limited methods such as UNIFAC, but
hey are not yet sophisticated enough for accurate applications
Eckert and Klamt, 2002; Arlt et al., 2004).

Despite the advances that have been made, the predictive
apability for solubility is still limited. UNIFAC and modified
NIFAC(Do), for example, both make use of equations derived

or eutectic systems and although most SLE are indeed eutectic
Fiege et al., 1996), systems with for example peritectic behavior
annot be described. The main reason for this limitation is that
hese models have been developed for temperature ranges rele-
ant for VLE phase diagrams; extension to solid, solid–liquid or
olid–solid behavior is difficult. Little attention has been given to
LE or solubility compared to VLE, but still much less attention

as been given to the mixing properties in solids.

In the following sections first the link between the thermo-
ynamics of solubility and SLE phase diagrams will be treated.
sing the thermodynamic basis underlying these phase diagrams

2

b
(
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number of models, which highlight various solubility curves
ne can encounter, will be analyzed. Finally, the models will be
eneralized, to include the cases of polymorphism and solvates.

In all cases equilibrium phase diagrams are treated, that is,
inetic effects have been neglected. Especially for crystallization
sing fast cooling, kinetics cannot be neglected. In recent work,
os et al. have developed methods to determine kinetic phase
iagrams. For that the reader is referred to Los et al. (2002, 2007)
nd Los and Matovic (2005).

For solutes that have a chiral center, which is of indisputable
elevance for pharmaceuticals, the reader is referred to the book
y Jacques et al. (1994).

. The theory of solubility

In this section the thermodynamic background of solubility
heory is treated. A rigorous thermodynamic derivation of the
olubility of a solid phase in a solvent up to the case of (quasi)
egular solutions is given. For the latter a mean field model is
sed. Special emphasis is put on the relation between solubility
urves and phase diagrams.

.1. Solubility and phase diagrams

To discuss the relation between solubility curves and
(olid)–L(iquid) phase equilibria first a typical S–L phase dia-
ram is discussed briefly. For a treatment of the thermodynamics
f phase diagrams in general the reader is referred to the excel-
ent book by Stølen and Grande (2004). The discussion is limited
o the case of binary mixtures of compounds A and B, without
oss of generality. When these compounds, besides in the liquid
hases, also mix in the solid phases, a situation which is in con-
rast with the case of solubility to be treated in the main body of
he present paper, the simultaneous presence of a solid and a liq-
id phase in thermodynamic equilibrium implies the chemical
otentials in these phases to be equal for both components:

s
A = μl

A, (1)

s
B = μl

B, (2)

here μ is the chemical potential and l and s label the liquid
hase and the solid phase, respectively. In terms of the activity
of the components A and B these equations become

s∗
A + RT ln as

A = μl∗
A + RT ln al

A, (3)

s∗
B + RT ln as

B = μl∗
B + RT ln al

B, (4)

here μ∗ is the chemical potential of the pure compound. In
hese equations the implicit variables T , P and the compositions
f the phases are omitted for convenience. Throughout the text
t is assumed that the pressure is constant, say P = P�, that is,
tandard pressure and the temperature is considered as a variable.
.1.1. S–L ideal phase diagrams
First the situation is considered for which the mixing is ideal

oth in the liquid and in the solid phase. This implies that in Eqs.
3) and (4) the activities can be replaced by the mole fractions



76 P. Bennema et al. / International Journal of Pharmaceutics 351 (2008) 74–91

F
p
l

(
s
F
r
a
p
p
p
f
f
l
n
c
s
(
r
t
w
s
f
t
i
o
f
b
t
p
a
p

2

b

n
i
(

Fig. 2. Typical S–L phase diagram of a binary mixture for which the mixing
is ideal, but the melting entropies of the pure compounds differ considerably.
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ig. 1. Typical S–L phase diagram of a binary mixture, ideally mixing in both
hases. The hatched area is forbidden because of Gibbs’ phase rule; there the
ever rule applies.

a
p
i = x

p
i ; i = A,B;p = s,l). Then, both in the liquid and in the

olid phase the components A and B can be mixed in any ratio.
or the solid phase this leads to a so-called solid solution. The
esulting phase diagram is given in Fig. 1. The temperature T
nd the composition xB = 1 − xA are the variables at the chosen
ressure. At high temperatures one finds the well-mixed liquid
hase, with no solid phase present. In this region the chemical
otential of the solid phase is larger than that of the liquid phase
or both compounds (μs

i > μl
i; i = A,B). The stability domain

or only a liquid phase is bounded from below by the liquidus
ine connecting the fusion temperatures of both (pure) compo-
ents. Below the liquidus a solid solution starts being formed in
ombination with the liquid phase. In equilibrium, the compo-
itions of these two phases follow the liquidus and the solidus
lower limiting line of the hatched area), respectively, on the
ight-hand and left-hand side of the hatched area. This implies
hat a composition in the hatched area is never realized.1 The
ell-known lever rule determines the amounts of the liquid and

olid phases. The size of the hatched area is determined by the
usion entropies and the difference in fusion temperatures of the
wo (pure) compounds. Below the solidus only the solid solution
s present (μs

i < μl
i; i = A,B). The ideal mixing phase diagram

f Fig. 1 is typical for metals or semiconductors, for which the
usion entropies of the pure compounds are usually compara-
le. For organic crystals, even in case of ideal mixing behavior,
he melting entropies can be quite different, leading to a more
ronounced phase diagram. Fig. 2 shows an example of such
phase diagram, for which the two compounds still mix in all
roportions in both phases.
.1.2. S–L eutectic phase diagrams
Next the case that the compounds A and B are well misci-

le in the liquid phase but limited miscible in the solid phase,

1 Gibbs’ phase rule, F = C − P + 2, for a two component system (C = 2,
amely A and B) and the presence of two phases (P = 2, namely s and l)
mplies that for a chosen pressure P equilibrium is described by a curve in the
xB, T )-diagram. As a consequence, in the hatched area two phases are present.

F
p
b
s

he hatched area is forbidden because of Gibbs’ phase rule; there the lever rule
pplies.

s a result of a relatively large positive enthalpy of mixing in
he solid phase, is considered. This leads to solid solutions
hat are either rich in A, which are denoted as � or rich in
, denoted as �. In Fig. 3 the resulting eutectic phase dia-
ram is drawn. For the eutectic composition, xE, the liquid
hase solidifies at TE to form both solid solutions. For tem-
eratures below the eutectic temperature, TE, only two solid
olution phases, � and �, are present each following the solidi.
n the right-hand side of the solidus of compound B the sys-

em consists of a single solid solution (�) phase. The area on
he left-hand side of the solidus of the compound A represents
single � phase. Note, that in the latter two areas, because of

he presence of a single phase, Gibbs’ phase rule allows both T
nd xB as variables. In the hatched areas, again, the lever rule
etermines the amounts of the liquid and solid phases with com-
ositions determined by the liquidus and solidi bordering these
ig. 3. S–L phase diagram of a binary mixture completely miscible in the liquid
hase but almost immiscible in the solid phase. The hatched areas are forbidden
ecause of Gibbs’ phase rule; there the lever rule applies. Phase � is a solid
olution rich in A and � is a solid solution rich in B.
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Fig. 4. Typical S–L phase diagram of a binary mixture well miscible in the
liquid phase but immiscible in the solid phase. The hatched area is forbidden
because of Gibbs’ phase rule; there the lever rule applies. The dashed part of the
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iquidus of the solute B represents the solubility curve described in the present
aper.

.2. Solubility phase diagrams

Now, consider a solvent A in which a solute B is dissolved.
solubility curve is the curve x(T ) that describes the maximal

mount of solute B that can be dissolved in the solvent A at a
emperature T. In case of a typical solubility problem the fusion
emperature of the solvent, TA

fus, is relatively low as compared
o that of the solute, that is, the solvent does not solidify within
he temperature range relevant for the solution. Moreover, the
olvent, in most cases, does not mix with the solute in its solid
hase.2 For such systems the phase diagram looks like that in
ig. 4. In this figure the solubility curve, which is nothing else

han the liquidus line, is drawn as a dashed line. The solidus
ine of the solute is running along the xB = 1-axis because of
he assumption that the solid phase does not include solvent

olecules. The solidus of the solvent is not drawn as it is not
elevant because it is assumed that the temperature is always far
bove the fusion temperature of the solvent, T A

fus. As a result, the
olid phases are pure phases, either of compound A or B, denoted
s sA and sB, respectively. Note, that the position of the eutectic
omposition, xE, does not necessarily lie close to the xB = 0-
ine. In terms of the phase diagram of Fig. 4, the present paper
ims to describe the solubility curve for temperatures well above
he eutectic temperature TE, indicated as the dashed liquidus in
he figure.

Thus, the solubility curve is nothing else than the line that in
T (x) phase diagram divides the phase region consisting of a

iquid mixture of A and B, for which no solid phase is present,
nd the region where a liquid mixture of A and B is present
ogether with a pure solid phase of the solute B. In other words,

hermodynamic equilibrium for a saturated solution is achieved
hen the solid phase B is in contact with a saturated solution

t a given temperature T and pressure P. Equilibrium along the

2 Solvates are an exception to that; in the case of solvates the composition of
he solid phase is fixed.

n
a
2
w
t
t
l

ig. 5. Alternative thermodynamic cycle for the transition from the solid state
f the solute to its undercooled liquid state at temperature T.

olubility curve implies that the chemical potential of the solute
n the solid phase is equal to that of the solute in the liquid
hase. In other words, thermodynamic equilibrium as described
y Eqs. (3) and (4), for the case of a solubility curve is determined
y

s∗
B = μl∗

B + RT ln al
B, (5)

s the presence of a solid phase of the solvent A is not considered
nd the pure solid phase implies as

B = 1.
In terms of the activity coefficient γ l

B and the mole fraction
l
B of the solute in the solution Eq. (5) becomes

s∗
B = μl∗

B + RT ln γBxB = μl∗
B + RT ln xB + RT ln γB, (6)

here the label l in the right-hand terms is omitted for conve-
ience. This expression can be rearranged to find the solubility
f the solute in terms of its mole fraction xB:

n xB = μs∗
B − μl∗

B

RT
− ln γB. (7)

The second term on the right-hand side of Eq. (7) involves the
enerally very complex chemistry of the interactions between
he solute and the solvent molecules. The first term on the
ight-hand side involves only properties of the pure solute, for
hich the difference in chemical potential can be described in

erms of the Gibbs free energy difference (per mol) g∗
B = G∗

B/n,
here n is the total number of moles in the system, according

o

μs∗
B − μl∗

B

RT
= gs∗

B − gl∗
B

RT
= −Δs→lg

∗
B(T )

RT
. (8)

The Gibbs free energy Δs→lg
∗
B(T ) at the system temperature

s not easily determined experimentally. Usually a thermody-

amic cycle that is depicted in Fig. 5 is used for that (Hildebrand
nd Scott, 1964; Bennema and Söhnel, 1990; Gracin et al.,
002). In this figure, as an alternative for the direct path 1 → 4
hich involves Δs→lg

∗
B(T ), the solute is heated from the system

emperature T to its fusion temperature (1 → 2), transformed to
he liquid phase (2 → 3) and subsequently cooled down in the
iquid state back to the system temperature (3 → 4), resulting in
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will be considered in more detail, namely ideal mixing, a regular
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he supercooled liquid.3 Conservation of free energy implies4

s→lg
∗
B(T ) = Δ1→4g

∗
B(T ) = Δ1→2g

∗
B + Δ2→3g

∗
B + Δ3→4g

∗
B.

(9)

As at the melting temperature Tfus the liquid and solid phase
re in thermodynamic equilibrium it follows that

2→3g
∗
B = Δfusg

∗
B(Tfus) = 0. (10)

Combining Eqs. (8)–(10) results in

μs∗
B − μl∗

B

RT
= −

∫ Tfus

T

d

(
gs∗

B

RT ′

)
−
∫ T

Tfus

d

(
gl∗

B

RT ′

)

= 1

R

∫ Tfus

T

d

(
Δs→lg

∗
B

T ′

)
. (11)

In this equation T ′ is used as a dummy variable for the integra-
ion to avoid confusion with the system temperature T. Because
he system is assumed to be at constant pressure P one can,
ubsequently, use (Gracin et al., 2002) the Gibbs–Helmholtz
quation5

∂

∂T

(
G

T

))
P

= − H

T 2 , (12)

o rewrite expression (11) to

μs∗
B − μl∗

B

RT
= − 1

R

∫ Tfus

T

(
Δs→lh

∗
B

T ′ 2

)
dT ′. (13)

To obtain experimental values for this difference in chemi-
al potential of the pure solute the transition enthalpy Δs→lh

∗
B

as to be measured between the system temperature T and the
elting temperature Tfus, which is still difficult but, in princi-

le, more accessible than measuring the transition Gibbs free
nergies from Eq. (8) as Δs→lh

∗
B can be determined by mea-

uring the heat of solidification of supercooled melts at various
emperatures.

If Eq. (13) is combined with Eq. (7) one finds a general
xpression for the solubility of a solid phase B in a solvent A
t temperature T and constant pressure P, under the assumption
hat the amount of A dissolved in the solid phase B is negligible,
eading

1
∫ Tfus

(
Δs→lh

∗ (T ′)
)

n xB = −
R T

B

T ′ 2 dT ′ − ln γB, (14)

here Δs→lh
∗
B(T ′) = hl∗

B (T ′) − hs∗
B (T ′).

3 Prausnitz et al. (1999) consequently uses the triple point temperature Ttriple

nstead of the fusion temperature Tfus because of the possible presence of a gas
hase, implying a system pressure equal to the triple point pressure.
4 If a solid state phase transition occurs before the meting point the Gibbs free
nergy change of that phase transition should be added in the cycle of Fig. 5; this
s the case for a solute showing polymorphism which is treated in Section 3. In
ddition, if the solid sublimes before melting the sublimation transition should
e used instead of the fusion transition.
5 The Gibbs–Helmholtz equation, strictly spoken, only holds for equilibrium

ituations, that is, at Tfus; here, it is assumed that the equation also holds for
< T ′ < Tfus.

s
t
i

F
s

f Pharmaceutics 351 (2008) 74–91

In Appendix A some approximations for the first term on the
ight-hand side of Eq. (14) are discussed. The second right-hand
erm in this expression, ln γB, which describes the thermody-
amics of the solute dissolved in the solvent as a deviation from
deal mixing, is generally rather involved. To include the effect
f mixing the undercooled liquid phase of the solute B with the
olvent A in the scheme of Fig. 5 the path has to be extended. The
dditional path 4 → 5 is drawn in Fig. 6. The path description
sed allows for an alternative formulation of Eq. (5)

1→4μB + Δ4→5μB =
(
μl∗

B − μs∗
B

)
+ ΔmixμB = 0, (15)

escribing the equilibrium between the solid solute and the dis-
olved solute. Comparison with Eqs. (5) and (13) leads to

T ln aB = RT ln xB + RT ln γB

= ΔmixμB = −T

∫ Tfus

T

(
Δs→lh

∗
B

T ′ 2

)
dT ′. (16)

From a thermodynamic point of view there is an essential
ifference between mixtures of liquid phases or solid phases
n equilibrium with their vapor mixtures and the solubility of

solid compound in a solvent. This becomes clear when one
ompares the mixing thermodynamics of an undercooled liquid
hase of a solute in a solvent, which will be treated further on,
ith the mixture of two liquids. In the latter case one can estab-

ish thermodynamic equilibrium by mixing the two (or more)
iquids by equating the chemical potentials of all components
ith their chemical potentials in the gas phase as is usually done

or (L)iquid–(V)apor phase diagrams. For determining the sol-
bility of a solid phase in a solvent, however, the mixing term
epends, in general, not on the gas phase chemical potential
see footnote 1). In Fig. 6, one can not speak of an equilibrium
etween the undercooled solute and the solvent; only the final
olution and the solid phase can be in thermodynamic equilib-
ium. This is expressed by Eq. (5) for the solute B. In that light the
resent models are a limited subset of the situations modeled by
elton and Thompson (1975). In the latter paper the phase dia-
ram of a binary system is studied in dependence of the mixing
arameters both of the liquid and of the solid (solution) phase;
n other words of solid–liquid equilibria.

In the following sections three models for the mixing term
olution model and a quasi-regular solution model. An impor-
ant reference model is that of the ideal solution for which there
s no enthalpy of mixing (Δideal

mix H = 0) and a mere mixing

ig. 6. Alternative thermodynamic cycle for the dissolution of a solid B in a
olvent A at a temperature T.
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Table 1
The various approximations for the mixing enthalpy and entropy considered in
the present paper; the athermal and general situation will not be discussed in
detail

ΔmixH ΔmixS ΔE
mixH ΔE

mixS

Ideal 0 Δideal
mix S 0 0

Regular Δ
reg
mixH Δideal

mix S Δ
reg
mixH 0

Athermal 0 Δideal
mix S+ Δ

qu-reg
mix S 0 Δ

qu-reg
mix S

Quasi-regular Δ
reg

H ΔidealS+ Δ
qu-reg

S Δ
reg

H Δ
qu-reg

S
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mix mix mix mix mix

eneral ΔE
mixH Δideal

mix S+ ΔE
mixS ΔE

mixH ΔE
mixS

ntropy contribution Δideal
mix S representing the ideal configura-

ional entropy of mixing. All deviations of this ideal solution
odel are covered by so-called excess contributions, defined as

E
mixG = ΔE

mixH − TΔE
mixS ≡ ΔmixG − Δideal

mix G, (17)

r

E
mixH ≡ ΔmixH and ΔE

mixS ≡ ΔmixS − Δideal
mix S. (18)

In Table 1 an overview of the models is given.

.3. Ideal solutions

Ideal solutions already offer a lot of insight in the problem
f solubility. For an ideal solution, the solubility curve is the
iquidus of the solute B of a phase diagram of two compounds

and B that are immiscible in the solid phase and perfectly
iscible in the liquid phase. On a molecular level this implies

hat the reaction energy for the mixing reaction φAA + φBB →
φAB between the solute and solvent molecules is zero

AB − 1

2
(φAA + φBB) = 0, (19)

here φAA is the interaction energy between the solvent
olecules, φBB between the solute molecules and φAB rep-

esents the heterogeneous interaction energy. In other words,
ideal
mix H = 0. Then, the only contribution of the mixing to Eq.

16) is an ideal configurational entropic term, Δideal
mix S, as a result

f the mixture of nA mol of solvent and nB mol of the (super-
ooled) liquid solute. The total Gibbs free energy of mixing is
Denbigh, 1981)

ideal
mix G = −TΔideal

mix S = nRT (xA ln xA + xB ln xB), (20)

here n = nA + nB. The ideal mixing contribution to the chem-
cal potential change of the solute can be found by differentiating
q. (20) with respect to nB resulting in

ideal
mix μB =

(
∂Δideal

mix G
)

= RT ln xideal
B . (21)
∂nB
T,P,nA

Substituting this result in Eq. (16) one obtains for the activ-
ty coefficient γB = 1. Using Eq. (15) this leads to the ideal

(
d

Δ

f Pharmaceutics 351 (2008) 74–91 79

olubility equation

n xideal
B = μs∗

B − μl∗
B

RT
= − 1

R

∫ Tfus

T

(
Δs→lh

∗
B(T ′)

T ′ 2

)
dT ′. (22)

Note, that this solubility equation for an ideal solution only
epends on pure solute parameters.

.3.1. Interpretation of the ideal solubility curve
As long as it is assumed that the solution is ideal the solubility

urve can be described by Eq. (22) for temperatures above the
usion temperature of the solvent and compositions with xB >

E. In most cases, for which T solv
fus � T

(B)
fus , xE is very small. As

entioned before, therefore, the solubility curve is considered
o be represented by the liquidus of the solute for compositions
n the range 0 � xB < 1.

Assuming that the fusion enthalpy of the pure solute is inde-
endent of the temperature for all values of interest for xB, Eq.
22) reduces to

n xideal
B = −Δfush

∗
B

R

[
1

T
− 1

Tfus

]
, (23)

Eq. (23), when plotted as ln x versus 1/T , a representation
f solubility curves often referred to as van’t Hoff curves, leads
o a linear solubility curve which will be the reference curve in
ection 2.4 dealing with regular solutions.

In the limit of very high concentrations, xB ≈ 1, the sol-
bility curve can be interpreted as a result of freezing point
epression, the solvent acting as an impurity. Note that this
pproach is an alternative treatment of freezing point depres-
ion as it usually is considered for the case of a liquid with a
issolved solid or liquid acting as the impurity. For xB ≈ 1 and
sing ln xB = ln (1 − xA) ≈ xA Eq. (23) becomes

fus − T = RT 2
fus

Δfush
∗
B

xA, (24)

hich is the standard equation for the linear freezing point
epression, with the solvent acting as the impurity. As the solid
s usually dissolved at temperatures T far below the fusion tem-
erature Tfus the approximation used to arrive at Eq. (24) can
sually not be made.

In practice, Δfush
∗
B will depend on temperature, as a result

f which even for ideal solutions a classical solubility curve of
n xB versus 1/T does not result in a linear curve. In practice,
owever, the temperature range studied is rather limited, such
hat this curve is usually close to linear. In that case the slope of
his curve should not be interpreted as Δfush

∗
B/R but rather as

s→lh
∗
B(Texp)/R, sometimes denoted as ΔdisshB/R, where Texp

epresents the average experimental temperature (Boerrigter et
l., 2002).

To get an impression of the more general case of an ideal sol-
bility curve the temperature dependence of Δs→lh

∗
B(T ) in Eq.
22) is considered in Appendix A in terms of a linear temperature
ependence of the molar heat capacity according to

s→lcP (T ) = cl
P (T ) − cs

P (T ) = Δc0
P + Δc1

P (T − Tfus) . (25)
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ig. 7. The solubility curves according to Eq. (26) for (a) Δfush
∗
B = 20 kJ/mol

ines indicate Tfus. The heavy black lines represent the ideal solubility case for
lue lines Δc0

P = −100 and − 200 J/mol K, respectively. The figures (c) and (d

Here the case for which Δc1
P = 0 will be considered. Then

q. (51) becomes

n xB = Δfush
∗
B

R

[
1

Tfus
− 1

T

]
+ Δc0

P

R

[
Tfus

T
− ln

Tfus

T
− 1

]
.

(26)

This equation is plotted for a few values for Δc0
P in Fig. 7.

he common point of the solubility curves in this figure is the
usion temperature of the pure solute, marked by the dashed
lack lines. For the limiting case that T = Tfus, Eq. (26) reduces
o ln xB = 0, that is xB = 1, corresponding to the pure liquid
olute. The straight black lines in the van’t Hoff plots (Fig. 7 c
nd d) represent the ideal solubility situation for ΔcP = 0. The
ed curves in Fig. 7 represent the situation for which Δc0

P > 0.
n that case the solubility is larger than the reference straight

ine, showing a minimum solubility for a temperature given by

min = Tfus − Δfush
∗
B

Δc0
P

(Δc0
P > 0). (27)

t
H
c

fus = 370 K and (b) Δfush
∗
B = 100 kJ/mol and Tfus = 570 K. The dashed black

Δc0
P . The red lines show the values Δc0

P = 100, 200 and 500 J/mol K and the
the corresponding van’t Hoff curves of (a) and (b), respectively.

The blue curves show the situation for Δc0
P < 0, resulting

n a lower solubility and a non-linear van’t Hoff curve as a
esult of the increasing contribution of the Δc0

P term in Eq.
26) with decreasing temperature. A negative value for Δc0

P is
uite rare; an exception might have been found for pyrene (Wong
nd Westrum, 1971). Usually, cl

P (T ) > cs
P (T ) for temperatures

elow the fusion temperature. Although a negative value for
c0
P is rare, a positive value for Δc0

P large enough to lead to
minimum in the van’t Hoff curve at an accessible tempera-

ure can not be ruled out, a priori. For temperatures T < Tmin
he solubility increases with decreasing temperature. This phe-
omenon is known as retrograde solubility. The limiting case for
hich xB = 1 below the fusion temperature, obviously, is non-
hysical. To get an idea of the quantitative effect of Δs→lcP (T )
n the solubility curve the case of a pharmaceutical compound,
enlafaxine, is considered in detail in Appendix B.
In conclusion, in almost all cases Δs→lcP (T ) > 0, leading
o an increase in solubility and a deviation from the linear van’t
off curve. For large positive values a minimum in the solubility

an occur. Eq. (27) can be used as an indication for such behav-
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or. There are, however, other causes of retrograde solubility.
n Section 2.6 the issue of retrograde solubility will be touched
pon in more detail.

.4. Regular solutions

As mentioned before, approximations for the solubility, or in
eneral mixing of phases, beyond the ideal case are expressed in
erms of excess contributions, like ΔE

mixG, ΔE
mixH and ΔE

mixS, as
n Eqs. (17) and (18). Accordingly, the excess mixing chemical
otential difference is given by

E
mixμB =

(
∂ΔE

mixG

∂nB

)
T,P,nA

= ΔmixμB − Δideal
mix μB = RT ln γB. (28)

Regular solutions6 are a special case defined by the restric-
ion that ΔE

mixH �= 0 and ΔE
mixS = 0. On a molecular level this

estriction implies that for the mixing reaction φAA + φBB →
φAB, it holds that φAB �= (1/2) (φAA + φBB). For the limita-
ions of regular solution models the reader is referred to Prausnitz
t al. (1999).

The regular solution model treated here is based on the mean
eld model. In the mean field model it is assumed that the occur-
ence of the various interactions in the solution, φAB, φAA and
BB is randomly distributed, independent of the values of the

nteraction energies.7 To simplify the statistics of the neighbor-
ng interactions further, the solvent is divided in cells which are
ither filled with a solute molecule B or a solvent molecule A.
ach cell as Z interactions, with neighboring cells. Depending
n the concentration of solute xB the number of AB interactions,
ach having an energy φAB, between the cells in the model equals
xBxA = ZxB(1 − xB). Therefore the total excess enthalpy now
ecomes

reg
mixH = ΔE

mixH = ZnxB (1 − xB)

[
φAB − 1

2
(φAA + φBB)

]
,

(29)

here the superscript reg refers to the present mean field model
or a regular solution and the molecular interaction energies are
hosen to be negative. Defining the excess interaction energy by

E ≡ φAB − 1

2
(φAA + φBB) and Δ

reg
mixh ≡ ZφE (30)

nd combining Eqs. (20) and (29) one obtains

reg
mixG = nxB (1 − xB) Δ

reg
mixh + nRT (xA ln xA + xB ln xB).
(31)

6 The term regular solutions was first introduced by Hildebrand et al. (1970)
nd further restricted by Prausnitz et al. (1999).
7 This assumption will obviously be too crude for situations where φAB, φAA

nd φBB differ too much.

s

p
z
t
b
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Differentiating this expression with respect to nB one obtains
or the chemical potential change of the solute

reg
mixμB =

(
∂Δ

reg
mixG

∂nB

)
T,P,nA

= Δ
reg
mixh(1 − xB)2 + RT ln xB.

(32)

Substituting this result in Eq. (16) one obtains for the solu-
ility equation of the regular mean field solution

n x
reg
B = − 1

R

∫ Tfus

T

(
Δs→lh

∗
B(T ′)

T ′ 2

)
dT ′ − Δ

reg
mixh

RT

(
1−x

reg
B

)2
.

(33)

The activity coefficient in Eq. (16) is, thus, determined
hrough

n γB = Δ
reg
mixh

RT

(
1 − x

reg
B

)2
. (34)

To show the effect of Δ
reg
mixh on the solubility it will be

ssumed that Δs→lh
∗
B is independent of temperature, implying

n x
reg
B = Δfush

∗
B

R

[
1

Tfus
− 1

T

]
− Δ

reg
mixhB

R

[(
1 − x

reg
B

)2

T

]
.

(35)

This equation is plotted for a few values for Δ
reg
mixhB in Fig. 8.

gain, the straight black lines in the van’t Hoff plots (Fig. 8
and d) represent the ideal solubility situation described by
q. (23). The blue curves show the situation for Δ

reg
mixhB > 0

hich can, according to Eq. (29), be interpreted as φAB >

1/2)(φAA + φBB), a situation which is sometimes referred to
s less than equivalent wetting, equivalent wetting referring to
he ideal case. The red curves represent the situation for which
AB < (1/2)(φAA + φBB), or more than equivalent wetting. The
educed affinity between the molecules A and B for the blue
urves leads to a lower solubility at a given temperature as com-
ared to the ideal solubility curve. The reverse holds for the red
urves.

In the limit of low concentrations of the solute, that isxB → 0,
q. (35) becomes

n x
reg
B = Δfush

∗
B

R

[
1

Tfus
− 1

T

]
− Δ

reg
mixhB

RT
, (36)

hich in the van’t Hoff plot leads to straight lines with a slope
Δfush

∗
B + Δ

reg
mixhB)/R instead of Δfush

∗
B/R for the ideal solu-

ility curve, as can be seen in Fig. 8 c.
According to Eq. (35) the freezing point depression for small

A becomes

fus − T = RT 2
fus

Δfush
∗
B

xA − Δ
reg
mixhBTfus

Δfush
∗
B

x2
A, (37)

howing an extra term as compared to Eq. (24).
Another important feature in Fig. 8 is that for large enough
ositive values of Δ
reg
mixhB, the solubility curves show a hori-

ontal plateau in the T versus x curves (Fig. 8 a and b). For
hese values of Δ

reg
mixhB a particular situation occurs. The solu-

ility equation described by Eq. (23) would show a maximum
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Fig. 8. The solubility curves according to Eq. (35) for (a) Δfush
∗
B = 20 kJ/mol and Tfus = 370 K and (b) Δfush

∗
B = 100 kJ/mol and Tfus = 570 K. The dashed black

l whic
a d (d)
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ines indicate Tfus. The heavy black lines represent the ideal solubility case for
nd the red lines Δ

reg
mixhB = −1 and − 5 kJ/mol, respectively. The figures (c) an

nd a minimum in the xB interval of the plateau. In between
his maximum and minimum, however, the system is not stable
ue to liquid–liquid (L–L), separation, for which a diluted solu-
ion and a concentrated solution are in equilibrium. As a result,
he solubility curve has to be replaced by the horizontal lines
n an appropriate interval for the mole fraction xB. According
o Gibbs’ phase rule for a two component system, considered
ere, three phases can only coexist for a single point in the (T, x)
hase diagram. The end points of the horizontal lines corre-
pond to two solutions in equilibrium with the solid phase of
he solute. In the van’t Hoff plots the L–L separation tempera-
ure corresponds to the vertical part in the blue lines. Often the
erm oiling out is used for L–L separation (Bonnett et al., 2003).
he occurrence of L–L separation has not been reported often

or molecular compounds. For pharmaceuticals this might be
xplained by the, often, classified information of the data, see

.g. (Deneau and Steele, 2005); a paper with full details on this
opic was published by Lafferrère et al. (2004a, b). In case of
rotein crystallization, although strictly spoken not a binary sys-
em as a result of the presence of additional salts, L–L separation

m

Δ

h Δ
reg
mixhB = 0. The blue lines show the values Δ

reg
mixhB = 1, 10 and 20 kJ/mol

show the corresponding van’t Hoff curves of (a) and (b), respectively.

s a common feature often a result of kinetic effects (Vekilov,
004). In Appendix C the thermodynamics behind the cause of
–L separation are explained; there, also the conditions for L–L
eparation for the present regular solution model will be given.

For negative values of Δ
reg
mixhB no extrema are found in the

olubility curve within the present model.

.5. Beyond regular solutions

In the strict definition of a regular solutions as introduced by
ildebrand et al. (1970) the excess entropy of mixing, ΔE

mixS,
s zero (cf. Table 1). In this section a non-zero term for ΔE

mixS

ill be added to the regular solution model. For that it will be
ssumed that the excess entropy, like in the mean field model for
he regular solution, will depend on the number of heterogeneous
nteractions between the solvent molecules A and the solute
olecules B, leading to a Gibbs free energy of mixing equal to
qu-reg
mix G = nRT (xA ln xA + xB ln xB)

+ nxB (1 − xB)
[
Δ

reg
mixh − TΔ

qu-reg
mix s

]
. (38)
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ig. 9. The solubility curves according to Eq. (39) for Δfush
∗
B = 100 kJ/mol and T

olubility case for which Δ
reg
mixhB = Δ

qu-reg
mix s = 0. The blue lines show the values

ituations for Δ
qu-reg
mix s = 10 J/mol K; the red curves for Δ

qu-reg
mix s = −10 J/mol K

This excess entropy term should therefore be interpreted as
eing mainly due to a change in the vibrational and rotational
egrees of freedom of the molecules, but also containing extra
onfigurational contributions. This model is sometimes referred
o as the quasi-regular solution model, explaining the super-
cript in the equation (Stølen and Grande, 2004). Differentiating
q. (38) with respect to nB one finds analogously to the case
f regular solutions, neglecting the temperature dependence of
s→lh

∗
B(T ), for the solubility equation

n x
qu-reg
B = Δfush

∗
B

R

[
1

Tfus
− 1

T

]

−
(

Δ
reg
mixhB − TΔ

qu-reg
mix s

R

)[(
1 − x

reg
B

)2

T

]
. (39)

The activity coefficient in Eq. (16), for the
uasi-regular solution model, thus becomes ln γB =
Δ

reg
mixh/RT − Δ

qu-reg
mix s/R

) (
1 − x

reg
B

)2
. The resulting sol-

bility curves are plotted in Fig. 9 for a several of the
arameters of Fig. 8 b and a realistic value of Δ

qu-reg
mix s = 10

/mol K. In the van’t Hoff plots the slopes for the lower limit
f xb are still given by (Δfush

∗
B + Δ

reg
mixhB)/R as in the regular

olution case. Comparing Figs. 8 b and d and 9 shows that
ositive values of the excess entropy suppress the deviation
rom ideality of the excess enthalpy, while negative values
mplify the deviation.

A positive and negative value for the excess entropy can be
nterpreted as an increase, respectively decrease, in vibrational
nd rotational entropy in the solution as a result of the difference
etween the A–B interactions as compared to the A–A and B–B

nteractions. In other words, any excess enthalpy, either positive
r negative, will imply a change in excess entropy. In many
ases Δ

reg
mixhB and Δ

qu-reg
mix s have the same sign (Oonk et al., 1998)

esulting in a mutually compensating effect in Eq. (39), which in
urn leads to a smaller deviation from the ideal solubility curve.

c
e
Δ

s
s

570 K. The dashed black lines indicate Tfus. The heavy black lines represent the
hB = 1, 10 kJ/mol and Δ

qu-reg
mix s = 0. The green curves show the corresponding

he (x, T )-diagram and (b) the corresponding van’t Hoff curves.

.6. Deviations from mean field models

In the previous two sections the solubility of solutes has
een discussed on the basis of a mean field model assuming a
andom distribution of the solute and solvent molecules, with
sotropic interaction between them. Relatively strong homo-
eneous interactions lead to clustering of A or B molecules
esulting in deviations from the mean field approximation. The
ase of hydrogen bonds in solutions and complexes formed in
lectrolytic solutions are notorious for that. Both situations are
ot well described by the simple models presented here. More
ophisticated models as referred to in the introduction deal with
lustering effects, but are beyond the scope of this paper as they
epend too much on the specific compound and solvent used.
owever, the special case of retrograde solubility will be treated
riefly in the following section.

.7. Retrogade solubility

As was pointed out in Section 2.3 retrograde solubility, i.e.
ecreasing solubility with increasing temperature within a cer-
ain temperature interval, can in exceptional cases be explained
y a temperature dependence of the difference in heat capac-
ty of the undercooled molten solute and the solid solute. Also
he (quasi) regular solution models cannot describe this phe-
omenon without taking such a difference in heat capacity into
ccount. In general two causes can be distinguished for retro-
rade solubility.

A difference in heat capacity, Δs→lcP (T ), between the under-
ooled liquid phase and the solid phase of the solute as described
n Section 2.3 might lead to a retrograde solubility. Although in
ppendix B it is shown that this effect is not large enough for the

ase of the pharmaceutical compound venlafaxine, there might

xist examples of more complex organic molecules for which
s→lcP (T ) is large enough. Eq. (27) shows that a retrograde

olubility can be expected in case of a solute that has a relatively
mall heat of fusion Δfush

∗ combined with a large difference in
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At the transition temperature, Ttrs, indicated as Ttrs in Fig. 10 the
solubility (liquidus) curves for the two polymorphs cross. In the
latter figure the liquidi of both phase diagrams are only shown
above the transition temperature. Only at the transition temper-
4 P. Bennema et al. / International Jou

eat capacities Δs→lcP (T ). Calculations similar to the ones per-
ormed in Appendix B, for fat crystals (SSS), e.g., showed a fully
egligible effect of the relatively large value ofΔs→lcP (T ), rang-
ng from 400 J/mol K at T = 300 K to 100 J/mol K at T = Tfus,
aused by the large enthalpy of fusion, Δfush

∗ = 196 kJ/mol
Matovic et al., 2005). In general, a strong effect is to be expected
or compounds that have a large number of degrees of freedom
n the (undercooled) liquid phase as compared to the solid phase.

A decrease in entropy in the solution as a result of strong sol-
ation interactions can also lead to retrograde solubility. Such
n effect should be included in ΔE

mixS with an appropriate tem-
erature dependence. Examples are found for aqueous solutions
f salts. Small cations like Li+ and Ca2+ result in large ordered
ydration shells leading to strong heterogeneous interactions
etween the solute and solvent. The same holds for some cases
f transition metal ions forming complexes like Co4+ in the salt
N(CH3)]2CoCl4. No retrograde solubilities were found to be
eported for salts of pharmaceuticals, possibly because in most
ases the counter ion is an anion for these salts.

Hexamethylenetetramine (HMT), used in explosives and
lastics industries, is an example of a molecular crystal that
hows retrograde solubility (Quadrifoglio et al., 1971; Blanco
t al., 2006). The hydrate of the compound (C6H12N4·6H2O)
hows a eutectic behavior in the aqueous phase diagram,
hich dissolves incongruently at 286 K to form the anhydrate

C6H12N4). The solubility curve of the anhydrate, although
early temperature independent, is a retrograde (Aladko et al.,
n press). As a result of the presence of a haxahydrate, it is
empting to attribute the retrograde behavior to the formation of
omplexes with the solvent (Quadrifoglio et al., 1971); lack of
hermodynamic data, makes it difficult to determine the effect
f the heat capacity difference Δs→lcP (T ).

There is another case of retrograde solubility, beyond the
cope of this paper. In case of solid solutions the mixing thermo-
ynamics of the solvent in the solute has to be included and one
as to consider the Eqs. (3) and (4) instead of Eq. (5). Even for a
egular solution model this leads to an additional term Δ

reg
mixH

s,
here the superscript s refers to the solid solution phase. This

dditional parameter is enough to lead to retrograde solubility
s was shown for solid solutions of Sb and Cu in Si and Ge
Thurmond and Struthers, 1953). Such a retrograde solubility
urve is visible in Fig. 3 for the solidus of the solid solution
hase �. Solid solutions are quite common in alloys and mix-
ures of similar organic molecules like alkanes or fats (Oonk et
l., 1998), but rarely observed for molecular crystals like phar-
aceuticals dissolved in common solvents. If solid solutions

lay a role, retrograde solubilities can occur. Solid solutions
hould not be confused with solvates for which the solvent and
olute are built-in in a stoichiometrical relation in the solid phase
olvates, therefore lead to a very different phase diagram as will
e discussed in Section 3.1.

. Solubility and polymorphism
Polymorphism is the phenomenon that a compound, the
olute B, can crystallize in more than one crystal structure
nder seemingly identical conditions. Although there is only

F
l
s
t
t

f Pharmaceutics 351 (2008) 74–91

ne thermodynamically stable phase for a given temperature
nd pressure, often metastable crystalline phases are formed that
an persist for long times. Eventually, these phases will trans-
orm to the stable phase. This behavior is usually interpreted
n terms of Ostwald’s rule of stages (Ostwald, 1897). If the
olute exhibits polymorphism, the various polymorphic forms
ill have a different solubility. In general, the solubility of the
etastable forms will be higher than that of the stable form.
o keep the reasoning simple, situations of compounds showing
nly two polymorphic forms are discussed. The generalization
o cases of more than two polymorphic forms is straightfor-
ard. The thermodynamics of polymorphic systems is treated

n detail and illustrated with various experimental examples by
urger and Ramberger (1979a, b). Methods to determine the rel-
tive thermodynamic stability of polymorphs have been treated
y Yu (1995) and Yu et al. (2005). The effect of kinetics that
avors the formation of metastable forms is discussed in terms
f metastable zones by Threlfall (1995). In terms of the thermo-
ynamics of solutions there is an important difference between
onotropic and enantiotropic polymorphism. For a monotropic

ystem there is only one stable form at all temperatures at a
iven pressure. In that case, in thermodynamic equilibrium, the
etastable phase will always be dissolved and the stable form

an be in equilibrium with the solution as described by Eq. (5).
or an enantiotropic polymorphic system, however, there is a
hase transition temperature Ttrs below which one of the two
olymorphic forms (say form I) is stable and the other one is
etastable, while above that temperature form II is stable and

orm I is metastable. This implies that at the temperature Ttrs it
olds that μs

BI(Ttrs) = μs
BII(Ttrs). Any polymorphic form has its

wn (metastable) S–L phase diagram. In case of an enantiotropic
olymorphic compound B the equilibrium phase diagram shows
n additional feature as depicted in Fig. 10 as compared to Fig. 4.

B

ig. 10. Typical S–L phase diagram of a binary mixture well miscible in the
iquid phase but immiscible in the solid phase, for an enantiotropic polymorphic
ystem of the solute B. The dashed part of the liquidus of the solute B represents
he solubility curve described in the present paper. At TB

trs a solid–liquid phase
ransition between the polymorphic forms I and II occurs.
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ture both polymorphic solid forms can be in equilibrium with
he solution:

s
BI(Ttrs) = μs

BII(Ttrs) = μl
B(Ttrs) = μl∗

B (Ttrs) + RT ln al
B(Ttrs).

(40)

Note, that this equation is independent of the solvent used
Davey, 1982).8 This implies that in thermodynamic equilibrium
he solubility versus temperature curves of different polymorphs
lways cross each other at the same transition temperature
trs. In this light, situations where concomitant polymorphism
Bernstein et al., 1999) is observed for temperatures that dif-
er from the phase transition temperature Ttrs, always represent
on-equilibrium situations.

A further consequence of enantiotropic polymorphism is that
or temperatures below the transition temperature the integral in
q. (14) contains a contribution Δtrsh

∗
B(Ttrs)/T 2

trs for each of the
odels discussed above. For example, for the case that the dif-

erence in molar heat capacity is independent of the temperature
etween T and the fusion temperature of the solid phase melting
t the highest temperature, Eq. (26) has to be replaced by

n xB =
∑
trs

Δtrsh
∗
B

RTtrs
+ Δfush

∗
B

R

[
1

Tfus
− 1

T

]

+ Δs→lcP

R

[
Tfus

T
− ln

Tfus

T
− 1

]
− ln γB. (41)

Although, strictly a non-equilibrium situation, the presence
f the metastable polymorphic form in a solution, possibly con-
omitant with the stable polymorph, can, in many cases, persist
or a long time; long enough to determine a solubility curve (x
ersus T) for both polymorphic forms. Such cases are found both
or monotropic (Aret et al., 2007; Stoica et al., 2005) and enan-
iotropic (Park et al., 2003) systems. In principle, a metastable
olymorph corresponds to a local minimum in the Gibbs free
nergy. The metastable solid phase cannot find kinetic path-
ays to transform to the stable form in the time allowed by the

xperiment. The solubility of both polymorphs can, therefore,
e described by Eq. (7), be it with the appropriate parameters
or the two polymorphs according to

n xBI(II) = μs∗
BI(II) − μl∗

B

RT
− ln γB. (42)

Note, that the term ln γB, describing the non-ideality of the
olution, is the same for both polymorphs at any temperature
; the same holds for the chemical potential of the pure liquid
olute, μl∗

B . This implies that the difference in solubility of the
wo polymorphs at a temperature T offers valuable information

f the difference in chemical potential of their solid phases

s∗
BII − μs∗

BI = RT [ln xBII − ln xBI] . (43)

8 Here it is assumed that surface free energy contributions as a result of
olvent–solid interactions can be neglected, which is, usually, reasonable for
ractical crystal sizes, even in the case of precipitation. For most molecular
rystals the surface energy becomes comparable to the bulk energy for crystal
iameters of the order of some 1–10 nm.
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t
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As this equation involves pure compounds the chemical
otentials can be rewritten in terms of the differences in enthalpy
nd entropy of the two polymorphs according to

II→Ih
∗ − TΔII→Is

∗ = RTΔII→I ln xB. (44)

Assuming a negligible temperature dependence for both
II→Ih

∗ and ΔII→Is
∗,9 this equation can be used to determine

II→Ih
∗ and ΔII→Is

∗ as the slope and intercept with the y-axis
n a Δ ln xB versus 1/RT plot for the temperatures considered.
his was used, for example by Stoica et al. to determine the
issolution enthalpy and entropy of two polymorphic forms of a
teroid (Stoica et al., 2005). Moreover, Eq. (44) implies that the
ransition temperature for an enantiotropic system is determined
y

trs = ΔII→Ih
∗

ΔII→Is∗
(45)

s for any equilibrium phase transition. This temperature, when
eglecting the difference in heat capacity between the two
olymorphs in the temperature range between the transition
emperature Ttrs and Tfus, is given by

trs = Δfush
∗
BII − Δfush

∗
BI

(Δfush
∗
BII/T II

fus) − (Δfush
∗
BI/T I

fus)
(46)

Therefore the transition temperature can, besides from solu-
ility curves, be estimated from DSC measurements as long as
o solid–liquid transition between the polymorphic forms occurs
uring such an experiment. This has been successfully applied to
hree enantiotropically related polymorphs of venlafaxine (van
upen et al., in press).

In case the transition can not be avoided and the transi-
ion temperature Ttrs and the corresponding enthalpy change

trsh
∗ are available, e.g. from accurate DSC experiments, one

an use this information to estimate the solubility ratio of the
olymorphs using the method described by Mao et al. (2005).

.1. Pseudo polymorphs and solvates

The term pseudo polymorphism was originally used for
rystal structures that can contain guest molecules in various
mounts, e.g. solvent molecules, not influencing the structure
f the host lattice. Solvates are crystals for which the crystal
tructure contains a stoichiometric amount of solvent molecules
t well-defined crystallographic positions. In the case of water
eing the solvent the term hydrates is used. Solvates can there-
ore be considered as compounds of the form ApBq, where A
epresents the solvent and B the pure solute. In the field of poly-

orphism the term pseudo polymorphs is often used referring to

olvates. Fig. 11 shows a typical composition-temperature phase
iagram of such a system for which, two solid phases are stable:
pure solid phase B and a solvate AB. As before, the solid phase

9 Note, that this assumption is much more realistic as compared to the assump-
ions discussed when considering freezing point depression as it only concerns
emperatures for which the solubility curves are determined, which are usually
ar below the fusion temperature of the solute.
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Fig. 11. Typical S–L phase diagram of a binary mixture well miscible in the
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iquid phase but only stoichiometrically miscible in the solid phases, leading
o a pure solid phase B and a solvate AB; in case of molecular crystals such a
olvate is often called a pseudo polymorph.

f the solvent A is not considered as it is out of the experimental
emperature range as indicated by the dashed solubility curves.
he maxima in the solubility curves correspond to the fusion

emperatures of the solid phases. Starting from these maxima
he solubility curves can, again, be considered as freezing point
epression curves as a result of the admixture of one of the other
hases to the liquid phase, the curves ending in the eutectic points

E at the temperatures T
A, AB
E and T

AB, B
E , respectively. Within

he hatched areas the lever rule can be applied to determine the
mounts of the two phases in equilibrium. In Fig. 11 the phase
iagram limited to the composition interval 0 < xB < 0.5 can
e interpreted as an S–L phase diagram comparable to that of
ig. 4 with B replaced by AB; a same comparison can be made
or the interval 0.5 < xB < 1, A and B being replaced by AB
nd B, respectively. Concentrating on the composition interval
.5 < xB < 1 the negative slope of the solubility curve bounding
he l + sAB region should not be interpreted as a retrograde sol-
bility in this case. In practice, more than one solvate or pseudo
olymorphic form can be stable in various temperature and com-
osition intervals, leading to as so many maxima and eutectic
oints in the phase diagram (Reutzel-Edens et al., 2003).

. Conclusion

Although many methods have been developed for a quan-
itative prediction of vapor liquid equilibrium (VLE) phase
iagrams in the last century, much less attention has been given
o solid liquid equilibria (SLE). SLE phase diagrams contain the
ssential information for determining the solubility of a com-
ound in a solvent. Solubility has been studied in great detail at
he beginning of the last century. The thermodynamic basis of
olubility theory seems to have lost attention since then. In the
ast few decades solubility of especially organic molecules has
egained interest as a result of the discovery of many new organic
olecules in the field of pharmaceuticals. Not only the synthe-

is and purification of these compounds ask for suitable solvents

nd therefore solubility data, but also the frequent appearance
f various polymorphic crystal forms of these compounds, often
elated to the solubility properties in different solvents, have led
o an increasing demand for reliable solubility data.

d
t
a
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In this paper the thermodynamic basis of solubility theory is
eviewed and the link with binary phase diagrams is emphasized
or that. Starting from the simplest solubility model, i.e. the ideal
olubility case, models with increasing complexity are treated.
or that a mean field approach is used. The resulting solubility
urves as a function of temperature are presented for various
alues of the relevant thermodynamic parameters. Special situ-
tions, like liquid–liquid separation (oiling out) and retrograde
olubility are highlighted. It is, for example, shown that the dif-
erence in heat capacity between an undercooled melt and the
olid, a parameter which is almost always neglected, in the case
f more complex molecules like many pharmaceuticals, can have
considerable effect on the solubility. Special attention is given

o the solubility phase diagrams of monotropic and enantiotropic
olymorphic forms as well as solvates (pseudo polymorphs). In
assing a new method is introduced that allows to estimate the
ransition temperature of enantiotropically related polymorphs
rom melting temperatures and enthalpies of the poly-
orphs, which can be determined using standard calorimetric

echniques.
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ppendix A. The pure solute parameters

The general solubility Eq. (14) involves a pure solute param-
ter, Δs→lμ

∗
B, according to

Δs→lμ
∗
B(T )

RT
= μl∗

B (T ) − μs∗
B (T )

RT

= 1

R

∫ Tfus

T

(
Δs→lh

∗
B(T ′)

T ′ 2

)
dT ′. (47)

Although, as mentioned before, Δs→lh
∗
B can be determined

s a function of the temperature by measuring the heat of solidi-
cation of the supercooled liquid, various approximations have
een made in the literature to come to an expression in terms
f an experimentally more accessible parameter. Usually, such
pproximations are made for the molar heat capacity cP , rather
han for Δs→lh

∗
B. Therefore, first Eq. (14) is rewritten (Gracin

t al., 2002) in terms of the molar heat capacity cP , using

(T ′) = h(Tfus) + ∫ T ′
Tfus

cP dT as

n xB = Δfush
∗
B

R

[
1

Tfus
− 1

T

]

− 1

R

∫ Tfus

T

⎛
⎝∫ T ′

Tfus
Δs→lcPdT ′′

T ′ 2

⎞
⎠ dT ′, (48)

here Δs→lcP = cl
P − cs

P ; Eq. (48) applies as long as the solute

oes not sublime before melting and there is no solid state phase
ransition between T and Tfus. The term ln γB is set equal to zero
s only the pure solute terms are considered in this appendix.
n Eq. (48) the first term on the right-hand side describes the
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Fig. A.1. Schematic illustration of the fusion transition of the solid B; the red
and blue curves represent the properties of the stable liquid and solid phase,
respectively; the black curves represent the equilibrium properties of the solute.
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at which the undercooled melt did not recrystallize yet. Start-
ing from that temperature a second heating run was performed,
again, up to a temperature well above the melting temperature.
To determine the heat capacities accurately, the measurement

Fig. B.1. The measured CP -curves of venlafaxine for a heating run (black trace)
starting at room temperature up to a temperature well beyond the melting tem-
perature (T = 348.1 K), followed by a cooling run down to a temperature at
a) The enthalpy of the solute. (b) The heat capacity of the solute in case of a
uadratic temperature dependence of the enthalpy; the sharp peak at T = Tfus

s an idealized representation of the phase transformation.

ontribution to the solubility due to the jump in the enthalpy
s a result of the fusion process at the fusion temperature; the
econd term accounts for the differences in enthalpy going from
he temperature T to Tfus. In Fig. A.1 these contributions are
llustrated. The sharp peak in Fig. A.1 b and the correspond-
ng jump in Fig. A.1 a mark the phase transformation and are
n idealization of the more spread behavior found in calorimet-
ic measurements. In practice, the transition from the solid to
he liquid phase always starts immediately at Tfus during heat-
ng, while the liquid phase can, often, be undercooled below
he fusion temperature. Therefore, the difference in heat capac-
ty Δs→lcP cannot be determined above the fusion temperature,
hile for temperatures below Tfus a non-zero value can be mea-

ured. The temperature dependence of Δs→lcP from T to Tfus
s described by the second term on the right-hand side of Eq.
48). Although the temperature dependence of the heat capacity
f the solid phase and the undercooled liquid phase can be far
rom linear it is to be expected that the difference of these, that
s Δs→lcP , is only moderately dependent on the temperature.
elow, some of the approximations found in the literature for

he temperature dependence of Δs→lcP are mentioned.
Eq. (23) describes the solubility curve when the difference in

olar heat capacity is neglected between T and Tfus, leading to
linear relation between ln xB and 1/T in a classical solubility
lot for ideal solutions.

Often an expansion of the difference in molar heat capacity
or both phases, in powers of the temperature T, around Tfus
s made. Here, only a linear dependence on the temperature as
uggested in Fig. A.1 b, according to

s→lcP (T ) = cl
P (T ) − cs

P (T ) = Δc0
P + Δc1

P (T − Tfus)

(49)

s considered. This leads to a quadratic temperature dependence
f the difference in molar enthalpy according to
s→lh
∗
B(T ) = Δfush

∗
B + Δc0

P (T − Tfus) + Δc1
P

2
(T − Tfus)

2.

(50)
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Substituting Eq. (50) in Eq. (47) leads to the ideal solubility
quation

n xB = Δfush
∗
B

R

[
1

Tfus
− 1

T

]
+ Δc0

P

R

[
Tfus

T
− ln

Tfus

T
− 1

]

+ Δc1
PTfus

2R

[
T

Tfus
− Tfus

T
+ 2 ln

Tfus

T

]
. (51)

The non-zero difference in enthalpy at the transition tem-
erature Tfus is covered by the first term on the right-hand side
f the equation. In all these approximations the temperature is
imited to T ≤ Tfus and it is assumed that the transition to the
iquid phase is instantaneous, or in other words, the tempera-
ure is increased slowly enough to allow the solid to melt in the
xperimental time. For a discussion of the effects of too fast
emperature runs in a DSC experiment the reader is referred to
efossemont et al. (2004).

ppendix B. CP -contribution: venlafaxine as an
xample

To get an impression of the contribution of the difference in
olar heat capacity of the undercooled liquid and the crystal,
s→lcP (T ), to the solubility expression (26) the heat capacities

or venlafaxine (van Eupen et al., in press) were measured using
Mettler Toledo DSC822e. For that measurement 15 mg of ven-

afaxine was loaded to one of the calorimeter cups, the reference
essel left empty. The material was > 99.9 % grade. The sample
as heated at a rate of 10◦ min−1 starting from room temper-

ture up to a temperature well above the melting temperature
Tfus = 348.1 K), subsequently cooled down to a temperature
fus

hich recrystallization did not occur (not shown). The second heating run (red
race) for the undercooled melt was made again up to temperatures well beyond
he melting temperature; the deviations at low temperatures are an artifact of the

easurement.
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ig. B.2. The solubility curves according to Eq. (26) for venlafaxine using Δfu

olubility case for which Δc0
P = 0. The green line shows the results for venlafax

hows the case for Δc0
P = 200 J/mol K. The dashed black line indicates Tfus. Fi

as preceded by two runs using the same cups; one performed
or two empty cups and a second one for which one of the vessels
as loaded with Al2O3 as a reference sample. The final tempera-

ure dependence of the CP -value of venlafaxine was determined
sing the equation

P ,sample(T ) = HFsample − HFempty

HFAl2O3 − HFempty

mAl2O3

msample
CP,Al2O3 (T ), (52)

here HF is the measured heat flow as a function of the tem-
erature and m is the mass of the sample. The resulting curves
re shown in Fig. B.1. The deviations at low temperatures are
n artifact due to the non-reliable data obtained with the device
sed at the start of any heating run. Undercooled venlafaxine

an be cooled down to a temperature of approximately 310 K
ithout solidification. The difference in heat capacity between

olid venlafaxine and its undercooled liquid phase turns out to
e almost independent of temperature over the entire range from

i
a
s
i

ig. B.3. The solubility curves according to Eq. (26) for naphthalene using Δfush

deal solubility case for which Δc0
P = 0, the green line the case of naphthalene for

c0
P = 200 J/mol K. The dashed black line indicates Tfus. Figure (b) shows the corre
27.20 kJ/mol and Tfus = 348.1 K. The heavy black curve represents the ideal
r which Δc0

P was determined to be 145 J/mol K. For comparison the blue curve
b) shows the corresponding van’t Hoff curves of (a).

10 K up to Tfus and is determined to be Δs→lcP (T ) ≈ Δc0
P =

45 J/mol K. Using this value together with Tfus = 348.1 K and
fush

∗
B = 27.20 kJ/mol in Eq. (26), the effect of Δs→lcP (T ) on

he solubility can be calculated. In Fig. B.2 the results are shown.
he figure shows that for the case of venlafaxine the solubility
eviates considerably from the ideal solubility curve for which
c0
P = 0. Moreover, it shows that for somewhat larger values

or Δc0
P retrograde solubility can occur within an accessible

emperature range.
As a second example, for naphthalene the same mea-

urement was performed, although its liquid phase could be
ndercooled only some 10 degrees below its fusion tempera-
ure. In this case Δs→lcP (T ) is relatively small and slightly

ncreases with decreasing temperature. The estimated aver-
ge value of Δs→lcP (T ) ≈ 20 J/mol K leads only to a very
mall deviation from the ideal solubility curve as can be seen
n Fig. B.3

∗
B = 19.1 kJ/mol and Tfus = 353.4 K. The heavy black curve represents the
which Δc0

P ≈ 20 J/mol K. For comparison the blue curve shows the case for
sponding van’t Hoff curves of (a).
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ppendix C. Liquid–liquid separation

In the regular solution model discussed in Section 2.4, Fig. 8
and b show a horizontal plateau in the solubility curves beyond
critical positive value of Δ

reg
mixhB. For the corresponding tem-

erature the solubility curves have to be replaced by horizontal
ines in the (x, T ) diagrams, resulting in the coexistence of an
-rich and a B-rich solution in thermodynamical equilibrium
ith the solid phase. The coexistence of two liquid phases is

lso known as liquid–liquid (L–L) separation. Here, the ther-
odynamics behind L–L separation will be reviewed shortly.

n Fig. C.1 a and b the solubility curve according to Eq. (35)
or two of the curves in Fig. 8 b have been redrawn without
he horizontal lines. According to Eqs. (32) and (35) the solu-
ility curve describes the dependence of the chemical potential
f the solute in the liquid phase, Δ

reg
mixμB, on the mole fraction

B up to a constant. As a result of the minimum free energy in
hermodynamic equilibrium, it holds that
∂2G

∂n2
B

)
P,T,nA

=
(

∂μl
B

∂nB

)
P,T,nA

≥ 0 (53)

i

T

ig. C.1. Two of the solubility curves (blue lines) of Fig. 8 b according to Eq. (35); Δ

55), the green lines that of Eq. (54) for (a) Δ
reg
mixhB = 10 kJ/mol and (b) Δ

reg
mixhB = 2

how an enlarged vertical scale for (a) and (b), respectively; in these graphs the meta
f Pharmaceutics 351 (2008) 74–91 89

s has been demonstrated in detail by Landau and Lifshitz
1959). The equality in Eq. (53) corresponds to a set of critical
oints, that define the borders of an instable situation. Substitut-
ng Eq. (32) one obtains for this equality condition

= 2Δ
reg
mixh

R
xB (1 − xB) . (54)

The corresponding curves, known as spinodals, have been
rawn as the green lines in the (x, T ) diagrams of Fig. C.1 a and
. Note, that these spinodals describe the behavior of the liquid
hase. In case of the presence of also a solid phase B, the critical
oints intersect with the solubility curve at certain temperatures,
xactly in the extrema of the solubility curve. In between these
inimum and maximum values the slope of the solubility curves

s negative, which therefore corresponds to a thermodynamically
nstable situation. The red curves in Fig. C.1 a and b correspond
o the values in the (x, T ) diagram where Δ

reg
mixμB = 0 or, in

ther words, the Gibbs free energy of mixing in the liquid phase

s minimal. These curves are defined by

= Δ
reg
mixh

R

2xB − 1

ln (1 − xB) − ln xB
(55)

fush
∗
B = 100 kJ/mol and Tfus = 570 K. The red lines show the function of Eq.

0 kJ/mol. Note, the different ranges for T in (a) and (b). The graphs (c) and (d)
stable solubility lines are indicated as dotted black lines.
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nd known as the binodals. For a liquid mixture without a solid
hase present, the binodal defines the region in the (x, T ) dia-
ram below which L–L separation takes place. When also a
olid phase is present, in the present case the solid B, Gibbs’
hase rule restricts this region to a single temperature, which is
efined by the intersection between the binodal and the solubil-
ty curve. The values of xB of the two intersection points cannot
e determined in an analytical form because it involves a tran-
cendental equation. These have been determined numerically
or the parameters of Fig. C.1 a and b, leading to the Fig. C.1
and d where the vertical scale has been blown up to show the

ntersection points more clearly and the horizontal lines in the
orrected blue solubility curve have been added.10

The binodal and spinodal in the present model are sym-
etrical in xA and xB. The top of both at xB = 1/2 is given

y

= Δ
reg
mixh

2R
. (56)

Substituting this value in the solubility Eq. (35) one finds for
he critical value of Δ

reg
mixh for L–L separation

reg
mixh = 4Δfush

∗
B

2 ln 2 − 1 + 2(Δfush
∗
B/RTfus)

, (57)

hich for the parameters of Fig. C.1 yields Δ
reg
mixh = 9.392

J/mol, which is slightly smaller than the middle blue curve
n the figure.

In Section 2.5 an additional excess entropy was introduced
eading to a so-called quasi-regular solution model in the mean-
eld approximation. For this model the binodal and spinodal are
till symmetrical in xA and xB. The top of both at xB = 1/2 is
ow given by

= Δ
reg
mixh

Δ
qu-reg
mix s + 2R

, (58)

eading to a critical value of Δ
reg
mixh for L–L separation

reg
mixh = 4Δfush

∗
B(1 + 2Δ

qu-reg
mix s/R)

2 ln 2 − 1 + 2(Δfush
∗
B/RTfus)

, (59)

For the parameters of Fig. 9 this leads to Δ
reg
mixh =

5.040 kJ/mol for Δ
qu-reg
mix s = 10 J/mol K. This explains the

bsence of a plateau, indicating L–L separation, in Fig. 9 a for
reg
mixh = 10 kJ/mol and Δ

qu-reg
mix s = 10 J/mol K.

Summarizing, only at the temperature where the solubil-
ty curve intersects the binodal two liquid phases with mole
ractions corresponding to the intersection points are in ther-

odynamic equilibrium with the solid phase of the solute B.
or temperatures and mole fractions above the solubility curve
ut below the binodal (red line) the liquid also separates in two

10 Note, that within the L–L separation interval for xB the areas of the deviating
olubility above and below the horizontal line are not equal, in contrast to the
ell-known example of the liquid–gas phase equilibrium of, e.g. the van der
aals equation, where the so-called ’Maxwell equal area rule’ holds.

M
O

O
P
P
P

f Pharmaceutics 351 (2008) 74–91

iquid phases, with no solid phase. For temperatures and mole
ractions above the binodal only a single liquid phase is present.
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