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Abstract

The thermodynamic theory of solubility of molecular crystals in solvents is reviewed with an emphasis on solutes showing polymorphism as in
case of many pharmaceuticals. The relation between solubility and binary phase diagrams of the solute solvent system is treated. The astonishing
variety of possible solubility curves as a function of temperature is explained using simple models for the solution thermodynamics assuming no
mixing between the solvent and solute in the solid phase, though including the case of solvates or pseudo polymorphs. In passing a new method is
introduced that allows to estimate the transition temperature of enantiotropically related polymorphs from melting temperatures and enthalpies of

the polymorphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The first practical understanding of solubility dates back
to 1900-1930 (Hildebrand, 1916, 1929; Mortimer, 1922).
Since the introduction of the concept of a regular solution
by Hildebrand (1929), later resulting in the solubility param-
eter and Scatchard-Hildebrand theory of regular solutions,
numerous new models have been proposed in order to describe
the non-ideal behavior of solutions more correctly. Predic-
tive methods can be very useful tools to reduce the amount
of experiments needed to determine solubilities, and the
development of reliable, transferable and quick methods is in
continuous progress (Gmehling, 2003a, b). Although it might
seem as if 1930 is long ago, the theories described before that
date still contain the essentials of current solubility models.
Modern models have astonishing capabilities, but they are not
complete and experimental data are still needed. Especially for
multicomponent mixtures, however, experimental methods are
not only time-consuming (Gmehling, 2003a), but expensive
and difficult as well.
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Compared to vapor liquid equilibria (VLE), much less atten-
tion has been given to SLE (solid liquid equilibria) and solubility,
one of the reasons being the much larger importance of rectifi-
cation as compared to crystallization (Gmehling, 2003b; Jakob
et al., 1995). Still, SLE and solubility of solids in liquids are
of great interest: crystallization processes are used, e.g. for the
separation and purification of thermo labile compounds or iso-
meric compounds with a very similar vapor pressure (Lohmann
et al., 1998). Moreover, the link between solid phase diagrams
and solubility is rarely recognized in literature and certainly not
generally known. Of course, for solubility behavior showing
complete eutectic behavior, it is not so relevant to make this link,
but when polymorphism occurs, phase diagrams are becoming
useful. Especially for pharmaceutical compounds both fields,
solubility of organic compounds in various solvents and poly-
morphism, have attained an increasing interest in recent years
as both are essential, for instance during the development of a
new drug (Ruelle et al., 2000).

It is the aim of this paper to make the connection between
(binary) phase diagrams and solubility starting from simple ther-
modynamics relevant for the solubility behavior of solids in
liquids and to apply it to the solubility of polymorphic forms. In
that light it is not the aim to describe predictive models for the
solubility of molecular crystals but rather to use simple models to
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describe the thermodynamics behind the astonishing variety of
solubility curves found in practical situations. The relation with
polymorphism of molecular crystals will be emphasized. Start-
ing from the simplest of all models, the ideal solution model,
the complexity of the models will be gradually increased, in all
cases limiting the analysis to the essentials.

The need for quantitative solubility data, on the other hand,
has led to a variety of models for predicting solubility, each with
its specific emphasis; in the following a short overview is given.
The first widely applicable predictive model for solubility and
solutions is the regular solution theory (Gmehling, 2003a). This
method makes use of a single solubility parameter, which can
describe the real behavior of mixtures of non-polar compounds
(Prausnitz et al., 1999). A disadvantage is that the regular solu-
tion assumptions cannot describe mixtures of polar molecules,
and although some empirical modifications can extend the use of
the regular solution model (Barton, 1975)(a well known example
is the Hansen solubility parameter approach (Hansen, 1969)),
it is in many cases replaced by more sophisticated methods.
Nowadays, the modified UNIFAC(Do) method (Lohmann et al.,
2001) is in general the most used method available for pre-
dictions. In 1978 already it has been shown that the original
UNIFAC is capable of predicting SLE and solubility (Gmehling
et al., 1978), but only for a limited number of compounds.
Originally, UNIFAC, being based on a large database of thermo-
dynamic data, was developed for VLE in the temperature range
290-400K and predictions for SLE or below 290K can lead
to poor results. To increase the temperature range, in modified
UNIFAC(Do) the temperature dependence was incorporated and
SLE data were used as supporting information, improving the
results considerably (Lohmann et al., 2001). For simple com-
pounds, modified UNIFAC(Do) is a helpful tool for predicting
solubility (Eckert and Klamt, 2002), but for more complicated
molecules, other models have to be used. An example from the
pharmaceutical field is the mobile-order-disorder theory, a rel-
atively unknown method that can describe solubility behavior
of complex drug-based molecules (Ruelle et al., 2000). Another
upcoming approach is predicting real solution behavior with
the help of quantum-chemical methods, such as COSMO-RS
(Eckert and Klamt, 2002). Such models can describe more
systems than database-limited methods such as UNIFAC, but
they are not yet sophisticated enough for accurate applications
(Eckert and Klamt, 2002; Arlt et al., 2004).

Despite the advances that have been made, the predictive
capability for solubility is still limited. UNIFAC and modified
UNIFAC(Do), for example, both make use of equations derived
for eutectic systems and although most SLE are indeed eutectic
(Fiege et al., 1996), systems with for example peritectic behavior
cannot be described. The main reason for this limitation is that
these models have been developed for temperature ranges rele-
vant for VLE phase diagrams; extension to solid, solid-liquid or
solid—solid behavior is difficult. Little attention has been given to
SLE or solubility compared to VLE, but still much less attention
has been given to the mixing properties in solids.

In the following sections first the link between the thermo-
dynamics of solubility and SLE phase diagrams will be treated.
Using the thermodynamic basis underlying these phase diagrams

a number of models, which highlight various solubility curves
one can encounter, will be analyzed. Finally, the models will be
generalized, to include the cases of polymorphism and solvates.

In all cases equilibrium phase diagrams are treated, that is,
kinetic effects have been neglected. Especially for crystallization
using fast cooling, kinetics cannot be neglected. In recent work,
Los et al. have developed methods to determine kinetic phase
diagrams. For that the reader is referred to Los et al. (2002, 2007)
and Los and Matovic (2005).

For solutes that have a chiral center, which is of indisputable
relevance for pharmaceuticals, the reader is referred to the book
by Jacques et al. (1994).

2. The theory of solubility

In this section the thermodynamic background of solubility
theory is treated. A rigorous thermodynamic derivation of the
solubility of a solid phase in a solvent up to the case of (quasi)
regular solutions is given. For the latter a mean field model is
used. Special emphasis is put on the relation between solubility
curves and phase diagrams.

2.1. Solubility and phase diagrams

To discuss the relation between solubility curves and
S(olid)-L(iquid) phase equilibria first a typical S—L phase dia-
gram is discussed briefly. For a treatment of the thermodynamics
of phase diagrams in general the reader is referred to the excel-
lent book by Stglen and Grande (2004). The discussion is limited
to the case of binary mixtures of compounds A and B, without
loss of generality. When these compounds, besides in the liquid
phases, also mix in the solid phases, a situation which is in con-
trast with the case of solubility to be treated in the main body of
the present paper, the simultaneous presence of a solid and a lig-
uid phase in thermodynamic equilibrium implies the chemical
potentials in these phases to be equal for both components:

Wa = Ma, (D
wy = i, @
where p is the chemical potential and I and s label the liquid

phase and the solid phase, respectively. In terms of the activity
a of the components A and B these equations become

H’Xk + RT lna; = ,u,}: + RT lnak, 3)
w4+ RT Inay = ul + RT Indl, )

where p* is the chemical potential of the pure compound. In
these equations the implicit variables 7', P and the compositions
of the phases are omitted for convenience. Throughout the text
it is assumed that the pressure is constant, say P = P® that is,
standard pressure and the temperature is considered as a variable.

2.1.1. S-L ideal phase diagrams

First the situation is considered for which the mixing is ideal
both in the liquid and in the solid phase. This implies that in Eqgs.
(3) and (4) the activities can be replaced by the mole fractions
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Fig. 1. Typical S-L phase diagram of a binary mixture, ideally mixing in both
phases. The hatched area is forbidden because of Gibbs’ phase rule; there the
lever rule applies.

(@’ = x?;i = A,B;p = s,1). Then, both in the liquid and in the
solid phase the components A and B can be mixed in any ratio.
For the solid phase this leads to a so-called solid solution. The
resulting phase diagram is given in Fig. 1. The temperature 7
and the composition xg = 1 — xp are the variables at the chosen
pressure. At high temperatures one finds the well-mixed liquid
phase, with no solid phase present. In this region the chemical
potential of the solid phase is larger than that of the liquid phase
for both compounds (u} > /L}-; i = A,B). The stability domain
for only a liquid phase is bounded from below by the liquidus
line connecting the fusion temperatures of both (pure) compo-
nents. Below the liquidus a solid solution starts being formed in
combination with the liquid phase. In equilibrium, the compo-
sitions of these two phases follow the liquidus and the solidus
(lower limiting line of the hatched area), respectively, on the
right-hand and left-hand side of the hatched area. This implies
that a composition in the hatched area is never realized.! The
well-known lever rule determines the amounts of the liquid and
solid phases. The size of the hatched area is determined by the
fusion entropies and the difference in fusion temperatures of the
two (pure) compounds. Below the solidus only the solid solution
is present (u} < M%; i = A,B). The ideal mixing phase diagram
of Fig. 1 is typical for metals or semiconductors, for which the
fusion entropies of the pure compounds are usually compara-
ble. For organic crystals, even in case of ideal mixing behavior,
the melting entropies can be quite different, leading to a more
pronounced phase diagram. Fig. 2 shows an example of such
a phase diagram, for which the two compounds still mix in all
proportions in both phases.

2.1.2. S-L eutectic phase diagrams
Next the case that the compounds A and B are well misci-
ble in the liquid phase but limited miscible in the solid phase,

I Gibbs’ phase rule, 7 =C — P+ 2, for a two component system (C = 2,
namely A and B) and the presence of two phases (P = 2, namely s and 1)
implies that for a chosen pressure P equilibrium is described by a curve in the
(xp, T)-diagram. As a consequence, in the hatched area two phases are present.

A B
T

T

58

I {
0 — Xp 1

Fig. 2. Typical S-L phase diagram of a binary mixture for which the mixing
is ideal, but the melting entropies of the pure compounds differ considerably.
The hatched area is forbidden because of Gibbs’ phase rule; there the lever rule
applies.

as a result of a relatively large positive enthalpy of mixing in
the solid phase, is considered. This leads to solid solutions
that are either rich in A, which are denoted as o or rich in
B, denoted as . In Fig. 3 the resulting eutectic phase dia-
gram is drawn. For the eutectic composition, xg, the liquid
phase solidifies at 7y to form both solid solutions. For tem-
peratures below the eutectic temperature, Tg, only two solid
solution phases, a and f3, are present each following the solidi.
On the right-hand side of the solidus of compound B the sys-
tem consists of a single solid solution () phase. The area on
the left-hand side of the solidus of the compound A represents
a single o phase. Note, that in the latter two areas, because of
the presence of a single phase, Gibbs’ phase rule allows both T
and xp as variables. In the hatched areas, again, the lever rule
determines the amounts of the liquid and solid phases with com-
positions determined by the liquidus and solidi bordering these
areas.

— Xp 1

Fig. 3. S-L phase diagram of a binary mixture completely miscible in the liquid
phase but almost immiscible in the solid phase. The hatched areas are forbidden
because of Gibbs’ phase rule; there the lever rule applies. Phase « is a solid
solution rich in A and {3 is a solid solution rich in B.
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Fig. 4. Typical S-L phase diagram of a binary mixture well miscible in the
liquid phase but immiscible in the solid phase. The hatched area is forbidden
because of Gibbs’ phase rule; there the lever rule applies. The dashed part of the
liquidus of the solute B represents the solubility curve described in the present
paper.

2.2. Solubility phase diagrams

Now, consider a solvent A in which a solute B is dissolved.
A solubility curve is the curve x(7') that describes the maximal
amount of solute B that can be dissolved in the solvent A at a
temperature 7. In case of a typical solubility problem the fusion
temperature of the solvent, Tfﬁs, is relatively low as compared
to that of the solute, that is, the solvent does not solidify within
the temperature range relevant for the solution. Moreover, the
solvent, in most cases, does not mix with the solute in its solid
phase.? For such systems the phase diagram looks like that in
Fig. 4. In this figure the solubility curve, which is nothing else
than the liquidus line, is drawn as a dashed line. The solidus
line of the solute is running along the xg = 1-axis because of
the assumption that the solid phase does not include solvent
molecules. The solidus of the solvent is not drawn as it is not
relevant because it is assumed that the temperature is always far
above the fusion temperature of the solvent, Ttﬁs' As aresult, the
solid phases are pure phases, either of compound A or B, denoted
as s and sp, respectively. Note, that the position of the eutectic
composition, xg, does not necessarily lie close to the xg = 0-
line. In terms of the phase diagram of Fig. 4, the present paper
aims to describe the solubility curve for temperatures well above
the eutectic temperature Tg, indicated as the dashed liquidus in
the figure.

Thus, the solubility curve is nothing else than the line that in
a T(x) phase diagram divides the phase region consisting of a
liquid mixture of A and B, for which no solid phase is present,
and the region where a liquid mixture of A and B is present
together with a pure solid phase of the solute B. In other words,
thermodynamic equilibrium for a saturated solution is achieved
when the solid phase B is in contact with a saturated solution
at a given temperature 7 and pressure P. Equilibrium along the

2 Solvates are an exception to that; in the case of solvates the composition of
the solid phase is fixed.

2 fusion 3

Fig. 5. Alternative thermodynamic cycle for the transition from the solid state
of the solute to its undercooled liquid state at temperature 7.

solubility curve implies that the chemical potential of the solute
in the solid phase is equal to that of the solute in the liquid
phase. In other words, thermodynamic equilibrium as described
by Egs. (3) and (4), for the case of a solubility curve is determined
by

1y = ugp + RT Inag, (5)

as the presence of a solid phase of the solvent A is not considered
and the pure solid phase implies a} = 1.

In terms of the activity coefficient 1, and the mole fraction
x}a of the solute in the solution Eq. (5) becomes

wy = ul + RT Inygxg = ulf + RT Inxg + RT Inyp, (6)

where the label 1 in the right-hand terms is omitted for conve-
nience. This expression can be rearranged to find the solubility
of the solute in terms of its mole fraction xg:

1
Up — U

In =
B RT

—Inysp. 7

The second term on the right-hand side of Eq. (7) involves the
generally very complex chemistry of the interactions between
the solute and the solvent molecules. The first term on the
right-hand side involves only properties of the pure solute, for
which the difference in chemical potential can be described in
terms of the Gibbs free energy difference (per mol) g = G /n,
where 7 is the total number of moles in the system, according
to

HE =g gh —gp _ Avigp(D)

®)

RT RT RT

The Gibbs free energy As_,185(T) at the system temperature
is not easily determined experimentally. Usually a thermody-
namic cycle that is depicted in Fig. 5 is used for that (Hildebrand
and Scott, 1964; Bennema and Sohnel, 1990; Gracin et al.,
2002). In this figure, as an alternative for the direct path 1 — 4
which involves A, 15 (T), the solute is heated from the system
temperature 7 to its fusion temperature (1 — 2), transformed to
the liquid phase (2 — 3) and subsequently cooled down in the
liquid state back to the system temperature (3 — 4), resulting in
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the supercooled liquid.? Conservation of free energy implies*
As185(T) = A14gp(T) = A128p + A238p + A3-485-
©)

As at the melting temperature Tt the liquid and solid phase
are in thermodynamic equilibrium it follows that

A2—>3gﬁ = Afung(Tfus) =0. (10)

Combining Egs. (8)—(10) results in

Y — g :_/de g5 _/T af 55
RT RT') ~ Jr. "\ RT
Thys A
7/ < s—>lgB> ) (11)

In this equation 7" is used as adummy variable for the integra-
tion to avoid confusion with the system temperature 7. Because
the system is assumed to be at constant pressure P one can,
subsequently, use (Gracin et al., 2002) the Gibbs—Helmholtz
equation’

3 (G\\ _ H .
(ar (T)>P—‘T2’ (12

to rewrite expression (11) to

Sk Ik Ty *
_ 1 fus A N h
Mg —HB _ _f/ Ss—1lp dr’. (13)
RT R Jr T2

To obtain experimental values for this difference in chemi-
cal potential of the pure solute the transition enthalpy As_.1hj
has to be measured between the system temperature 7 and the
melting temperature Tf,g, which is still difficult but, in princi-
ple, more accessible than measuring the transition Gibbs free
energies from Eq. (8) as As_,1hf can be determined by mea-
suring the heat of solidification of supercooled melts at various
temperatures.

If Eq. (13) is combined with Eq. (7) one finds a general
expression for the solubility of a solid phase B in a solvent A
at temperature 7 and constant pressure P, under the assumption
that the amount of A dissolved in the solid phase B is negligible,
reading

Ttus *)h* T/
1an_—*/ ( s }/2( )> dT’ —Inyg, (14)

where Ag_ 1 (T) = hi(T) —

hSE(T).

3 Prausnitz et al. (1999) consequently uses the triple point temperature Tysiple
instead of the fusion temperature Ty, because of the possible presence of a gas
phase, implying a system pressure equal to the triple point pressure.

4 If a solid state phase transition occurs before the meting point the Gibbs free
energy change of that phase transition should be added in the cycle of Fig. 5; this
is the case for a solute showing polymorphism which is treated in Section 3. In
addition, if the solid sublimes before melting the sublimation transition should
be used instead of the fusion transition.

5 The Gibbs—Helmholtz equation, strictly spoken, only holds for equilibrium
situations, that is, at Tts; here, it is assumed that the equation also holds for
T<T < Tqs.

In Appendix A some approximations for the first term on the
right-hand side of Eq. (14) are discussed. The second right-hand
term in this expression, In yg, which describes the thermody-
namics of the solute dissolved in the solvent as a deviation from
ideal mixing, is generally rather involved. To include the effect
of mixing the undercooled liquid phase of the solute B with the
solvent A in the scheme of Fig. 5 the path has to be extended. The
additional path 4 — 5 is drawn in Fig. 6. The path description
used allows for an alternative formulation of Eq. (5)

Ay s4uB + Ay5uB = (MIB* - 153*> + Amixu =0, 5

describing the equilibrium between the solid solute and the dis-
solved solute. Comparison with Egs. (5) and (13) leads to

RT Inag = RT Inxg + RT Inyp

Ttus A h*
= AmixitB = —T/ (S;lz B) dr’. (16)
T

From a thermodynamic point of view there is an essential
difference between mixtures of liquid phases or solid phases
in equilibrium with their vapor mixtures and the solubility of
a solid compound in a solvent. This becomes clear when one
compares the mixing thermodynamics of an undercooled liquid
phase of a solute in a solvent, which will be treated further on,
with the mixture of two liquids. In the latter case one can estab-
lish thermodynamic equilibrium by mixing the two (or more)
liquids by equating the chemical potentials of all components
with their chemical potentials in the gas phase as is usually done
for (L)iquid—(V)apor phase diagrams. For determining the sol-
ubility of a solid phase in a solvent, however, the mixing term
depends, in general, not on the gas phase chemical potential
(see footnote 1). In Fig. 6, one can not speak of an equilibrium
between the undercooled solute and the solvent; only the final
solution and the solid phase can be in thermodynamic equilib-
rium. This is expressed by Eq. (5) for the solute B. In that light the
present models are a limited subset of the situations modeled by
Pelton and Thompson (1975). In the latter paper the phase dia-
gram of a binary system is studied in dependence of the mixing
parameters both of the liquid and of the solid (solution) phase;
in other words of solid-liquid equilibria.

In the following sections three models for the mixing term
will be considered in more detail, namely ideal mixing, a regular
solution model and a quasi-regular solution model. An impor-
tant reference model is that of the ideal solution for which there
is no enthalpy of mixing (Airgie;‘lH =0) and a mere mixing

solute B ! solution A+B

mixing 5.

Fig. 6. Alternative thermodynamic cycle for the dissolution of a solid B in a
solvent A at a temperature 7.
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Table 1

The various approximations for the mixing enthalpy and entropy considered in
the present paper; the athermal and general situation will not be discussed in
detail

Amix H AmixS Aiu” AEﬂxS
Ideal 0 Aldealg 0 0
Regular A H Aldeal g AR H 0
Athermal 0 Aldeilgy pdTeEg g ANRES
Quasi-regular A% H A S+ ARTES AnicH AnRES
General AL H Airgie)?] S+ AL S AL H AbLS

entropy contribution A9¢4lS representing the ideal configura-
tional entropy of mixing. All deviations of this ideal solution
model are covered by so-called excess contributions, defined as
AE G = AE, H — TAE, S = A G — A%UG, (17)

mix mix mix mix
or

AL H = ApxH and AL S = A8 — Aldls.  (18)

mix

In Table 1 an overview of the models is given.

2.3. Ideal solutions

Ideal solutions already offer a lot of insight in the problem
of solubility. For an ideal solution, the solubility curve is the
liquidus of the solute B of a phase diagram of two compounds
A and B that are immiscible in the solid phase and perfectly
miscible in the liquid phase. On a molecular level this implies
that the reaction energy for the mixing reaction ¢aa + ¢ —
2¢aB between the solute and solvent molecules is zero

1
dAB — 3 (paa + ¢BB) =0, (19)

where ¢aa is the interaction energy between the solvent
molecules, ¢pp between the solute molecules and ¢ap rep-
resents the heterogeneous interaction energy. In other words,
Airgiele = 0. Then, the only contribution of the mixing to Eq.
(16) is an ideal configurational entropic term, AfgieflS, as aresult
of the mixture of na mol of solvent and ng mol of the (super-
cooled) liquid solute. The total Gibbs free energy of mixing is
(Denbigh, 1981)

ARG — _TASlg — R (xp Inxp 4 xp Inxp), (20)
where n = na + np. The ideal mixing contribution to the chem-
ical potential change of the solute can be found by differentiating
Eq. (20) with respect to np resulting in

. 8Aid-ealG .
Aldeal g — (mlx = RT In xi$ed, 1)
anB
T.Pna
Substituting this result in Eq. (16) one obtains for the activ-
ity coefficient yp = 1. Using Eq. (15) this leads to the ideal

solubility equation

In xideal pE—ug 1 /Tms (W) ar’. (22)
RT R Jp T

Note, that this solubility equation for an ideal solution only
depends on pure solute parameters.

2.3.1. Interpretation of the ideal solubility curve

As long as it is assumed that the solution is ideal the solubility
curve can be described by Eq. (22) for temperatures above the
fusion temperature of the solvent and compositions with xg >
xg. In most cases, for which Tfsu"slV < Tf(fs), Xg is very small. As
mentioned before, therefore, the solubility curve is considered
to be represented by the liquidus of the solute for compositions
in the range 0 < xp < 1.

Assuming that the fusion enthalpy of the pure solute is inde-
pendent of the temperature for all values of interest for xg, Eq.
(22) reduces to

In xideal — _ Atushy [1 _ ] , (23)
R T T

Eq. (23), when plotted as Inx versus 1/7, a representation
of solubility curves often referred to as van’t Hoff curves, leads
to a linear solubility curve which will be the reference curve in
Section 2.4 dealing with regular solutions.

In the limit of very high concentrations, xg ~ 1, the sol-
ubility curve can be interpreted as a result of freezing point
depression, the solvent acting as an impurity. Note that this
approach is an alternative treatment of freezing point depres-
sion as it usually is considered for the case of a liquid with a
dissolved solid or liquid acting as the impurity. For xg &~ 1 and
using Inxg = In (1 — xa) = xa Eq. (23) becomes

RT?
Trus — T = —5 x4, 24)
® Afushg

which is the standard equation for the linear freezing point
depression, with the solvent acting as the impurity. As the solid
is usually dissolved at temperatures 7 far below the fusion tem-
perature Tg,g the approximation used to arrive at Eq. (24) can
usually not be made.

In practice, Ag,shfy will depend on temperature, as a result
of which even for ideal solutions a classical solubility curve of
In xg versus 1/T does not result in a linear curve. In practice,
however, the temperature range studied is rather limited, such
that this curve is usually close to linear. In that case the slope of
this curve should not be interpreted as Agshj;/R but rather as
As_1h(Texp)/ R, sometimes denoted as Agigshp /R, where Texp
represents the average experimental temperature (Boerrigter et
al., 2002).

To get an impression of the more general case of an ideal sol-
ubility curve the temperature dependence of As_,145(T) in Eq.
(22)is considered in Appendix A in terms of a linear temperature
dependence of the molar heat capacity according to

Asoicp(T) = p(T) = ¢p(T) = Ach + Acp (T = Trg) . (25)
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Fig. 7. The solubility curves according to Eq. (26) for (a) Afyshyy = 20kJ/mol and Tfys = 370K and (b) Agyshfy = 100kJ/mol and Ttys = 570 K. The dashed black
lines indicate Tf,s. The heavy black lines represent the ideal solubility case for which Ac(,),. The red lines show the values Ac(l), = 100, 200 and 500 J/mol K and the
blue lines AC(;, = —100 and — 200 J/mol K, respectively. The figures (c) and (d) show the corresponding van’t Hoff curves of (a) and (b), respectively.

Here the case for which AC}D = 0 will be considered. Then
Eq. (51) becomes

Afushﬁ AC(})

! ! + 1
R Trws T R '

Ttus Ttus
Inxg = —In

T T
(26)

This equation is plotted for a few values for Ac% in Fig. 7.
The common point of the solubility curves in this figure is the
fusion temperature of the pure solute, marked by the dashed
black lines. For the limiting case that T = Ty, Eq. (26) reduces
to Inxg = 0, that is xg = 1, corresponding to the pure liquid
solute. The straight black lines in the van’t Hoff plots (Fig. 7 ¢
and d) represent the ideal solubility situation for Acp = 0. The
red curves in Fig. 7 represent the situation for which Ac(}, > 0.
In that case the solubility is larger than the reference straight
line, showing a minimum solubility for a temperature given by

AfushE

(Ach > 0).
Ac(})

Tmin = Tfus - (27)

The blue curves show the situation for Ac} < 0, resulting
in a lower solubility and a non-linear van’t Hoff curve as a
result of the increasing contribution of the AC(}, term in Eq.
(26) with decreasing temperature. A negative value for Ac(}, is
quite rare; an exception might have been found for pyrene (Wong
and Westrum, 1971). Usually, clp(T) > ¢(T) for temperatures
below the fusion temperature. Although a negative value for
AC?D is rare, a positive value for AC?D large enough to lead to
a minimum in the van’t Hoff curve at an accessible tempera-
ture can not be ruled out, a priori. For temperatures T < Tpin
the solubility increases with decreasing temperature. This phe-
nomenon is known as retrograde solubility. The limiting case for
which xg = 1 below the fusion temperature, obviously, is non-
physical. To get an idea of the quantitative effect of Ag_,1cp(T)
on the solubility curve the case of a pharmaceutical compound,
venlafaxine, is considered in detail in Appendix B.

In conclusion, in almost all cases Ag_1cp(T) > 0, leading
to an increase in solubility and a deviation from the linear van’t
Hoff curve. For large positive values a minimum in the solubility
can occur. Eq. (27) can be used as an indication for such behav-
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ior. There are, however, other causes of retrograde solubility.
In Section 2.6 the issue of retrograde solubility will be touched
upon in more detail.

2.4. Regular solutions

As mentioned before, approximations for the solubility, or in
general mixing of phases, beyond the ideal case are expressed in
terms of excess contributions, like AgixG , AEliXH and AEﬁxS ,as
in Egs. (17) and (18). Accordingly, the excess mixing chemical
potential difference is given by

dAE. G
AE‘ — mix
mix/B < ong )T,P,nA

= Amixitp — A s = RT Inyp. (28)
Regular solutions® are a special case defined by the restric-
tion that AEinH # 0 and AFniXS = 0. On a molecular level this
restriction implies that for the mixing reaction ¢aa + ¢ —
2¢aB, it holds that ¢ap # (1/2) (¢paa + ¢BB). For the limita-
tions of regular solution models the reader is referred to Prausnitz
et al. (1999).

The regular solution model treated here is based on the mean
field model. In the mean field model it is assumed that the occur-
rence of the various interactions in the solution, ¢pap, ¢aa and
¢ is randomly distributed, independent of the values of the
interaction energies.’ To simplify the statistics of the neighbor-
ing interactions further, the solvent is divided in cells which are
either filled with a solute molecule B or a solvent molecule A.
Each cell as Z interactions, with neighboring cells. Depending
on the concentration of solute xg the number of AB interactions,
each having an energy ¢ap, between the cells in the model equals
Zxpxa = Zxp(1 — xp). Therefore the total excess enthalpy now
becomes

1
AﬁH=A&H=ZMMFﬂw¢m—§@M+%w,
(29)

where the superscript reg refers to the present mean field model
for a regular solution and the molecular interaction energies are
chosen to be negative. Defining the excess interaction energy by

1
9 = gan — 5(pan + ¢me) and  ATh = Zg" (30)
and combining Egs. (20) and (29) one obtains

AIE‘?XG =nxg (1 — xB) A;eth 4+ nRT(xa Inxa + xg Inxp).
(31)

6 The term regular solutions was first introduced by Hildebrand et al. (1970)
and further restricted by Prausnitz et al. (1999).

7 This assumption will obviously be too crude for situations where ¢agp, Paa
and ¢pp differ too much.

Differentiating this expression with respect to n g one obtains
for the chemical potential change of the solute

IA"E G
Apius= (E;l“" = A" h(1 — xp)* + RT Inxp.
b (32)

Substituting this result in Eq. (16) one obtains for the solu-
bility equation of the regular mean field solution

Ttus reg

= [ (AH"%(T')> ar’ — Amid () reey2,
R Jr T’ RT

(33)

The activity coefficient in Eq. (16) is, thus, determined
through

reg

o regy 2
lnygzﬁ(l—xlg) . (34)
To show the effect of Aiﬁ‘igxh on the solubility it will be

assumed that A,_, 1A is independent of temperature, implying

2
e Al [ L 1] _ Apihs [(1 —xp°) ]

In xg R | T T R T
fus

(35)

This equation is plotted for a few values for Armeigth in Fig. 8.
Again, the straight black lines in the van’t Hoff plots (Fig. 8
¢ and d) represent the ideal solubility situation described by
Eq. (23). The blue curves show the situation for A2 hg > 0
which can, according to Eq. (29), be interpreted as ¢ap >
(1/2)(¢aa + ¢BB), a situation which is sometimes referred to
as less than equivalent wetting, equivalent wetting referring to
the ideal case. The red curves represent the situation for which
daB < (1/2)(¢paa + @BB), or more than equivalent wetting. The
reduced affinity between the molecules A and B for the blue
curves leads to a lower solubility at a given temperature as com-
pared to the ideal solubility curve. The reverse holds for the red
curves.

In the limit of low concentrations of the solute, thatisxg — 0,
Eq. (35) becomes

lnxrcg _ Afushﬁ 1 _ l _ A:ﬁ?th
B R |Twns T RT

; (36)

which in the van’t Hoff plot leads to straight lines with a slope
(Anushy + A2 hp)/ R instead of Agyshjy/R for the ideal solu-
bility curve, as can be seen in Fig. 8 c.

According to Eq. (35) the freezing point depression for small

xA becomes

RT? A" hp Ty
Tos =T = - f;:* xa = =B =X (37
fus/lp fus/lp

showing an extra term as compared to Eq. (24).

Another important feature in Fig. 8 is that for large enough
positive values of ALeligth, the solubility curves show a hori-
zontal plateau in the T versus x curves (Fig. 8 a and b). For
these values of Aiﬁ‘igxhg a particular situation occurs. The solu-
bility equation described by Eq. (23) would show a maximum
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and a minimum in the xp interval of the plateau. In between
this maximum and minimum, however, the system is not stable
due to liquid-liquid (L-L), separation, for which a diluted solu-
tion and a concentrated solution are in equilibrium. As a result,
the solubility curve has to be replaced by the horizontal lines
in an appropriate interval for the mole fraction xg. According
to Gibbs’ phase rule for a two component system, considered
here, three phases can only coexist for a single point in the (7, x)
phase diagram. The end points of the horizontal lines corre-
spond to two solutions in equilibrium with the solid phase of
the solute. In the van’t Hoff plots the L-L separation tempera-
ture corresponds to the vertical part in the blue lines. Often the
term oiling out is used for L-L separation (Bonnett et al., 2003).
The occurrence of L-L separation has not been reported often
for molecular compounds. For pharmaceuticals this might be
explained by the, often, classified information of the data, see
e.g. (Deneau and Steele, 2005); a paper with full details on this
topic was published by Lafferrere et al. (2004a, b). In case of
protein crystallization, although strictly spoken not a binary sys-
tem as a result of the presence of additional salts, L-L separation

hg = —1and — 5kJ/mol, respectively. The figures (c) and (d) show the corresponding van’t Hoff curves of (a) and (b), respectively.

is a common feature often a result of kinetic effects (Vekilov,
2004). In Appendix C the thermodynamics behind the cause of
L-L separation are explained; there, also the conditions for L-L
separation for the present regular solution model will be given.

For negative values of Az‘igxhg no extrema are found in the
solubility curve within the present model.

2.5. Beyond regular solutions

In the strict definition of a regular solutions as introduced by
Hildebrand et al. (1970) the excess entropy of mixing, AE. S,

is zero (cf. Table 1). In this section a non-zero term for AT%?XS
will be added to the regular solution model. For that it will be
assumed that the excess entropy, like in the mean field model for
the regular solution, will depend on the number of heterogeneous
interactions between the solvent molecules A and the solute

molecules B, leading to a Gibbs free energy of mixing equal to
Aqu—reg

mix G =nRT (xa Inxa + xg Inxp)

+nxg (1 — xB) [Areg h— TAqu_regs] .

mix mix

(38)
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This excess entropy term should therefore be interpreted as
being mainly due to a change in the vibrational and rotational
degrees of freedom of the molecules, but also containing extra
configurational contributions. This model is sometimes referred
to as the quasi-regular solution model, explaining the super-
script in the equation (Stglen and Grande, 2004). Differentiating
Eq. (38) with respect to ng one finds analogously to the case
of regular solutions, neglecting the temperature dependence of
A1 (T), for the solubility equation

I R

- Agysh 1 1
In ydu-Tee us/lp
Tus 1

reg qu-reg 2
[ AmixB —TAn, s (1 ) ) (39)
R T '

The activity coefficient in Eq. (16), for the
quasi-regular  solution model, thus becomes Inyg =

(ATE h/RT — AL s/R) (1 — xgg)z. The resulting sol-
ubility curves are plotted in Fig. 9 for a several of the
parameters of Fig. 8 b and a realistic value of A?r?i;(regs =10
J/mol K. In the van’t Hoff plots the slopes for the lower limit
of xy, are still given by (Agushy + Arrsigth)/R as in the regular
solution case. Comparing Figs. 8 b and d and 9 shows that
positive values of the excess entropy suppress the deviation
from ideality of the excess enthalpy, while negative values
amplify the deviation.

A positive and negative value for the excess entropy can be
interpreted as an increase, respectively decrease, in vibrational
and rotational entropy in the solution as a result of the difference
between the A—B interactions as compared to the A—A and B-B
interactions. In other words, any excess enthalpy, either positive
or negative, will imply a change in excess entropy. In many
cases A;eth B and A?nlﬁ;regs have the same sign (Oonk et al., 1998)
resulting in a mutually compensating effect in Eq. (39), which in
turn leads to a smaller deviation from the ideal solubility curve.

2.6. Deviations from mean field models

In the previous two sections the solubility of solutes has
been discussed on the basis of a mean field model assuming a
random distribution of the solute and solvent molecules, with
isotropic interaction between them. Relatively strong homo-
geneous interactions lead to clustering of A or B molecules
resulting in deviations from the mean field approximation. The
case of hydrogen bonds in solutions and complexes formed in
electrolytic solutions are notorious for that. Both situations are
not well described by the simple models presented here. More
sophisticated models as referred to in the introduction deal with
clustering effects, but are beyond the scope of this paper as they
depend too much on the specific compound and solvent used.
However, the special case of retrograde solubility will be treated
briefly in the following section.

2.7. Retrogade solubility

As was pointed out in Section 2.3 retrograde solubility, i.e.
decreasing solubility with increasing temperature within a cer-
tain temperature interval, can in exceptional cases be explained
by a temperature dependence of the difference in heat capac-
ity of the undercooled molten solute and the solid solute. Also
the (quasi) regular solution models cannot describe this phe-
nomenon without taking such a difference in heat capacity into
account. In general two causes can be distinguished for retro-
grade solubility.

A difference in heat capacity, As_,1cp(T), between the under-
cooled liquid phase and the solid phase of the solute as described
in Section 2.3 might lead to a retrograde solubility. Although in
Appendix B it is shown that this effect is not large enough for the
case of the pharmaceutical compound venlafaxine, there might
exist examples of more complex organic molecules for which
Ag1cp(T) is large enough. Eq. (27) shows that a retrograde
solubility can be expected in case of a solute that has a relatively
small heat of fusion Agsh™ combined with a large difference in
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heat capacities Ag_.1cp(T). Calculations similar to the ones per-
formed in Appendix B, for fat crystals (SSS), e.g., showed a fully
negligible effect of the relatively large value of Ag_,1cp(T), rang-
ing from 400 J/mol K at T = 300 K to 100 J/mol K at T = Ty,
caused by the large enthalpy of fusion, Ag,sh* = 196 kJ/mol
(Matovicetal., 2005). In general, a strong effect is to be expected
for compounds that have a large number of degrees of freedom
in the (undercooled) liquid phase as compared to the solid phase.

A decrease in entropy in the solution as a result of strong sol-
vation interactions can also lead to retrograde solubility. Such
an effect should be included in AiixS with an appropriate tem-
perature dependence. Examples are found for aqueous solutions
of salts. Small cations like Li* and Ca®* result in large ordered
hydration shells leading to strong heterogeneous interactions
between the solute and solvent. The same holds for some cases
of transition metal ions forming complexes like Co** in the salt
[N(CHj3)]>CoCly. No retrograde solubilities were found to be
reported for salts of pharmaceuticals, possibly because in most
cases the counter ion is an anion for these salts.

Hexamethylenetetramine (HMT), used in explosives and
plastics industries, is an example of a molecular crystal that
shows retrograde solubility (Quadrifoglio et al., 1971; Blanco
et al., 2006). The hydrate of the compound (C¢H2N4-6H>0)
shows a eutectic behavior in the aqueous phase diagram,
which dissolves incongruently at 286 K to form the anhydrate
(CeH12N4). The solubility curve of the anhydrate, although
nearly temperature independent, is a retrograde (Aladko et al.,
in press). As a result of the presence of a haxahydrate, it is
tempting to attribute the retrograde behavior to the formation of
complexes with the solvent (Quadrifoglio et al., 1971); lack of
thermodynamic data, makes it difficult to determine the effect
of the heat capacity difference Ag_,1cp(T).

There is another case of retrograde solubility, beyond the
scope of this paper. In case of solid solutions the mixing thermo-
dynamics of the solvent in the solute has to be included and one
has to consider the Eqs. (3) and (4) instead of Eq. (5). Even for a
regular solution model this leads to an additional term Affx HS,
where the superscript s refers to the solid solution phase. This
additional parameter is enough to lead to retrograde solubility
as was shown for solid solutions of Sb and Cu in Si and Ge
(Thurmond and Struthers, 1953). Such a retrograde solubility
curve is visible in Fig. 3 for the solidus of the solid solution
phase B. Solid solutions are quite common in alloys and mix-
tures of similar organic molecules like alkanes or fats (Oonk et
al., 1998), but rarely observed for molecular crystals like phar-
maceuticals dissolved in common solvents. If solid solutions
play a role, retrograde solubilities can occur. Solid solutions
should not be confused with solvates for which the solvent and
solute are built-in in a stoichiometrical relation in the solid phase
solvates, therefore lead to a very different phase diagram as will
be discussed in Section 3.1.

3. Solubility and polymorphism
Polymorphism is the phenomenon that a compound, the

solute B, can crystallize in more than one crystal structure
under seemingly identical conditions. Although there is only

one thermodynamically stable phase for a given temperature
and pressure, often metastable crystalline phases are formed that
can persist for long times. Eventually, these phases will trans-
form to the stable phase. This behavior is usually interpreted
in terms of Ostwald’s rule of stages (Ostwald, 1897). If the
solute exhibits polymorphism, the various polymorphic forms
will have a different solubility. In general, the solubility of the
metastable forms will be higher than that of the stable form.
To keep the reasoning simple, situations of compounds showing
only two polymorphic forms are discussed. The generalization
to cases of more than two polymorphic forms is straightfor-
ward. The thermodynamics of polymorphic systems is treated
in detail and illustrated with various experimental examples by
Burger and Ramberger (1979a, b). Methods to determine the rel-
ative thermodynamic stability of polymorphs have been treated
by Yu (1995) and Yu et al. (2005). The effect of kinetics that
favors the formation of metastable forms is discussed in terms
of metastable zones by Threlfall (1995). In terms of the thermo-
dynamics of solutions there is an important difference between
monotropic and enantiotropic polymorphism. For a monotropic
system there is only one stable form at all temperatures at a
given pressure. In that case, in thermodynamic equilibrium, the
metastable phase will always be dissolved and the stable form
can be in equilibrium with the solution as described by Eq. (5).
For an enantiotropic polymorphic system, however, there is a
phase transition temperature Tis below which one of the two
polymorphic forms (say form I) is stable and the other one is
metastable, while above that temperature form II is stable and
form I is metastable. This implies that at the temperature Ty it
holds that g (Ts) = upn(Ties)- Any polymorphic form has its
own (metastable) S-L phase diagram. In case of an enantiotropic
polymorphic compound B the equilibrium phase diagram shows
an additional feature as depicted in Fig. 10 as compared to Fig. 4.
At the transition temperature, Ty, indicated as Ttﬁ in Fig. 10 the
solubility (liquidus) curves for the two polymorphs cross. In the
latter figure the liquidi of both phase diagrams are only shown
above the transition temperature. Only at the transition temper-
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Fig. 10. Typical S-L phase diagram of a binary mixture well miscible in the
liquid phase but immiscible in the solid phase, for an enantiotropic polymorphic
system of the solute B. The dashed part of the liquidus of the solute B represents
the solubility curve described in the present paper. At 7,2 a solid-liquid phase
transition between the polymorphic forms I and II occurs.
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ature both polymorphic solid forms can be in equilibrium with
the solution:

V«%I(Ttrs) = N«%H(Ttrs) = M%g(Ttrs) = Mg(Ttrs) + RT In a%g(Ttrs)‘
(40)

Note, that this equation is independent of the solvent used
(Davey, 1982).8 This implies that in thermodynamic equilibrium
the solubility versus temperature curves of different polymorphs
always cross each other at the same transition temperature
Tirs. In this light, situations where concomitant polymorphism
(Bernstein et al., 1999) is observed for temperatures that dif-
fer from the phase transition temperature Ty, always represent
non-equilibrium situations.

A further consequence of enantiotropic polymorphism is that
for temperatures below the transition temperature the integral in
Eq. (14) contains a contribution Agshg(Tirs)/ TL%S for each of the
models discussed above. For example, for the case that the dif-
ference in molar heat capacity is independent of the temperature
between T and the fusion temperature of the solid phase melting
at the highest temperature, Eq. (26) has to be replaced by

Agshs Agushy 1 1
lan:Z trs B+ fus/lp |: :|

RTys R Ttus B ?

trs

Assicp | Tiys Ttus
o —In
R T

Although, strictly a non-equilibrium situation, the presence
of the metastable polymorphic form in a solution, possibly con-
comitant with the stable polymorph, can, in many cases, persist
for a long time; long enough to determine a solubility curve (x
versus T) for both polymorphic forms. Such cases are found both
for monotropic (Aret et al., 2007; Stoica et al., 2005) and enan-
tiotropic (Park et al., 2003) systems. In principle, a metastable
polymorph corresponds to a local minimum in the Gibbs free
energy. The metastable solid phase cannot find kinetic path-
ways to transform to the stable form in the time allowed by the
experiment. The solubility of both polymorphs can, therefore,
be described by Eq. (7), be it with the appropriate parameters
for the two polymorphs according to

- 1} —Inyg. (41)

1
/‘15?:’(1(11) — U
RT

Note, that the term In yp, describing the non-ideality of the
solution, is the same for both polymorphs at any temperature
T; the same holds for the chemical potential of the pure liquid
solute, ug. This implies that the difference in solubility of the
two polymorphs at a temperature T offers valuable information
of the difference in chemical potential of their solid phases

In XBI(II) = —1In YB. (42)

ugr — ;= RT [Inxp — Inxgq]. (43)

8 Here it is assumed that surface free energy contributions as a result of
solvent—solid interactions can be neglected, which is, usually, reasonable for
practical crystal sizes, even in the case of precipitation. For most molecular
crystals the surface energy becomes comparable to the bulk energy for crystal
diameters of the order of some 1-10 nm.

As this equation involves pure compounds the chemical
potentials can be rewritten in terms of the differences in enthalpy
and entropy of the two polymorphs according to

Ap1h* — TAn15* = RTAp1 Inxg. 44)

Assuming a negligible temperature dependence for both
An—1h* and Ap_1s*,° this equation can be used to determine
Aq—1h* and Ap_1s* as the slope and intercept with the y-axis
in a Alnxp versus 1/RT plot for the temperatures considered.
This was used, for example by Stoica et al. to determine the
dissolution enthalpy and entropy of two polymorphic forms of a
steroid (Stoica et al., 2005). Moreover, Eq. (44) implies that the
transition temperature for an enantiotropic system is determined
by

*
Tlrs T E—— (45)

as for any equilibrium phase transition. This temperature, when
neglecting the difference in heat capacity between the two
polymorphs in the temperature range between the transition
temperature Tt and Tyys, is given by

_ Afushﬁn - AfushEI
(AfushEH/ Tflds) — (Arus EI/TguS)

Therefore the transition temperature can, besides from solu-
bility curves, be estimated from DSC measurements as long as
no solid-liquid transition between the polymorphic forms occurs
during such an experiment. This has been successfully applied to
three enantiotropically related polymorphs of venlafaxine (van
Eupen et al., in press).

In case the transition can not be avoided and the transi-
tion temperature Tys and the corresponding enthalpy change
Aysh™ are available, e.g. from accurate DSC experiments, one
can use this information to estimate the solubility ratio of the
polymorphs using the method described by Mao et al. (2005).

(46)

trs

3.1. Pseudo polymorphs and solvates

The term pseudo polymorphism was originally used for
crystal structures that can contain guest molecules in various
amounts, e.g. solvent molecules, not influencing the structure
of the host lattice. Solvates are crystals for which the crystal
structure contains a stoichiometric amount of solvent molecules
at well-defined crystallographic positions. In the case of water
being the solvent the term hydrates is used. Solvates can there-
fore be considered as compounds of the form A,B,, where A
represents the solvent and B the pure solute. In the field of poly-
morphism the term pseudo polymorphs is often used referring to
solvates. Fig. 11 shows a typical composition-temperature phase
diagram of such a system for which, two solid phases are stable:
apure solid phase B and a solvate AB. As before, the solid phase

9 Note, that this assumption is much more realistic as compared to the assump-
tions discussed when considering freezing point depression as it only concerns
temperatures for which the solubility curves are determined, which are usually
far below the fusion temperature of the solute.
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Fig. 11. Typical S-L phase diagram of a binary mixture well miscible in the
liquid phase but only stoichiometrically miscible in the solid phases, leading
to a pure solid phase B and a solvate AB; in case of molecular crystals such a
solvate is often called a pseudo polymorph.

of the solvent A is not considered as it is out of the experimental
temperature range as indicated by the dashed solubility curves.
The maxima in the solubility curves correspond to the fusion
temperatures of the solid phases. Starting from these maxima
the solubility curves can, again, be considered as freezing point
depression curves as a result of the admixture of one of the other
phases to the liquid phase, the curves ending in the eutectic points
Xxg at the temperatures T]? +AB and TEAB B, respectively. Within
the hatched areas the lever rule can be applied to determine the
amounts of the two phases in equilibrium. In Fig. 11 the phase
diagram limited to the composition interval 0 < xg < 0.5 can
be interpreted as an S-L phase diagram comparable to that of
Fig. 4 with B replaced by AB; a same comparison can be made
for the interval 0.5 < xg < 1, A and B being replaced by AB
and B, respectively. Concentrating on the composition interval
0.5 < xp < 1thenegative slope of the solubility curve bounding
the [ + s 4 p region should not be interpreted as a retrograde sol-
ubility in this case. In practice, more than one solvate or pseudo
polymorphic form can be stable in various temperature and com-
position intervals, leading to as so many maxima and eutectic
points in the phase diagram (Reutzel-Edens et al., 2003).

4. Conclusion

Although many methods have been developed for a quan-
titative prediction of vapor liquid equilibrium (VLE) phase
diagrams in the last century, much less attention has been given
to solid liquid equilibria (SLE). SLE phase diagrams contain the
essential information for determining the solubility of a com-
pound in a solvent. Solubility has been studied in great detail at
the beginning of the last century. The thermodynamic basis of
solubility theory seems to have lost attention since then. In the
last few decades solubility of especially organic molecules has
regained interest as a result of the discovery of many new organic
molecules in the field of pharmaceuticals. Not only the synthe-
sis and purification of these compounds ask for suitable solvents
and therefore solubility data, but also the frequent appearance
of various polymorphic crystal forms of these compounds, often
related to the solubility properties in different solvents, have led
to an increasing demand for reliable solubility data.

In this paper the thermodynamic basis of solubility theory is
reviewed and the link with binary phase diagrams is emphasized
for that. Starting from the simplest solubility model, i.e. the ideal
solubility case, models with increasing complexity are treated.
For that a mean field approach is used. The resulting solubility
curves as a function of temperature are presented for various
values of the relevant thermodynamic parameters. Special situ-
ations, like liquid-liquid separation (oiling out) and retrograde
solubility are highlighted. It is, for example, shown that the dif-
ference in heat capacity between an undercooled melt and the
solid, a parameter which is almost always neglected, in the case
of more complex molecules like many pharmaceuticals, can have
a considerable effect on the solubility. Special attention is given
to the solubility phase diagrams of monotropic and enantiotropic
polymorphic forms as well as solvates (pseudo polymorphs). In
passing a new method is introduced that allows to estimate the
transition temperature of enantiotropically related polymorphs
from melting temperatures and enthalpies of the poly-
morphs, which can be determined using standard calorimetric
techniques.
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Appendix A. The pure solute parameters

The general solubility Eq. (14) involves a pure solute param-
eter, As_,114f3, according to

Ay (1) _ 1*(T) - S*(T)

RT
Tﬂ“ s 1h5(T") ,
— / ( 2 ) dr’. (47)

Although, as mentioned before, As_, 15 can be determined
as a function of the temperature by measuring the heat of solidi-
fication of the supercooled liquid, various approximations have
been made in the literature to come to an expression in terms
of an experimentally more accessible parameter. Usually, such
approximations are made for the molar heat capacity cp, rather
than for As_,1h};. Therefore, first Eq. (14) is rewritten (Gracin
et al., 2002) in terms of the molar heat capacity cp, using

W(T') = h(Tras) + [, cpdT as

Apushs [ 1 1]

R Ttys B ?

lan =

1 Trus ‘[7?;1;3 AS*>]CPdT”
- E /T T’ 2

where Ag_,1cp = clP — cp; Eq. (48) applies as long as the solute

does not sublime before melting and there is no solid state phase
transition between T and Ty,s. The term In yp is set equal to zero
as only the pure solute terms are considered in this appendix.
In Eq. (48) the first term on the right-hand side describes the

dr’, (48)
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Cp |®

T 1
Ty —=T Ty — =T

Fig. A.1. Schematic illustration of the fusion transition of the solid B; the red
and blue curves represent the properties of the stable liquid and solid phase,
respectively; the black curves represent the equilibrium properties of the solute.
(a) The enthalpy of the solute. (b) The heat capacity of the solute in case of a
quadratic temperature dependence of the enthalpy; the sharp peak at T = Tf,¢
is an idealized representation of the phase transformation.

contribution to the solubility due to the jump in the enthalpy
as a result of the fusion process at the fusion temperature; the
second term accounts for the differences in enthalpy going from
the temperature 7 to Tfys. In Fig. A.1 these contributions are
illustrated. The sharp peak in Fig. A.1 b and the correspond-
ing jump in Fig. A.1 a mark the phase transformation and are
an idealization of the more spread behavior found in calorimet-
ric measurements. In practice, the transition from the solid to
the liquid phase always starts immediately at T,s during heat-
ing, while the liquid phase can, often, be undercooled below
the fusion temperature. Therefore, the difference in heat capac-
ity Ag_,1cp cannot be determined above the fusion temperature,
while for temperatures below T,s a non-zero value can be mea-
sured. The temperature dependence of As_,jcp from T to Tty
is described by the second term on the right-hand side of Eq.
(48). Although the temperature dependence of the heat capacity
of the solid phase and the undercooled liquid phase can be far
from linear it is to be expected that the difference of these, that
is Ags_1cp, is only moderately dependent on the temperature.
Below, some of the approximations found in the literature for
the temperature dependence of Ag_,icp are mentioned.

Eq. (23) describes the solubility curve when the difference in
molar heat capacity is neglected between 7" and Ty, leading to
a linear relation between In xg and 1/T in a classical solubility
plot for ideal solutions.

Often an expansion of the difference in molar heat capacity
for both phases, in powers of the temperature 7, around Tgyg
is made. Here, only a linear dependence on the temperature as
suggested in Fig. A.1 b, according to

Asiep(T) = cp(T) — p(T) = Ach + Acp (T — Tius)
(49)

is considered. This leads to a quadratic temperature dependence
of the difference in molar enthalpy according to

Acl
Aethy(T) = Apushy + ACH (T — Trus) + TP(T — Trus)*.
(50)

Substituting Eq. (50) in Eq. (47) leads to the ideal solubility
equation

0
Inxg = Afushﬁ i _ l ACP Thus —In Thus —
R Ttus T R T T
1
ACprus l _ Tus +21n Ttus ) 51)
2R Ttus T T

The non-zero difference in enthalpy at the transition tem-
perature Ty, is covered by the first term on the right-hand side
of the equation. In all these approximations the temperature is
limited to T < Tfys and it is assumed that the transition to the
liquid phase is instantaneous, or in other words, the tempera-
ture is increased slowly enough to allow the solid to melt in the
experimental time. For a discussion of the effects of too fast
temperature runs in a DSC experiment the reader is referred to
Defossemont et al. (2004).

Appendix B. Cp-contribution: venlafaxine as an
example

To get an impression of the contribution of the difference in
molar heat capacity of the undercooled liquid and the crystal,
As_1cp(T), to the solubility expression (26) the heat capacities
for venlafaxine (van Eupen et al., in press) were measured using
a Mettler Toledo DSC822°. For that measurement 15 mg of ven-
lafaxine was loaded to one of the calorimeter cups, the reference
vessel left empty. The material was > 99.9 % grade. The sample
was heated at a rate of 10° min~! starting from room temper-
ature up to a temperature well above the melting temperature
(Trus = 348.1 K), subsequently cooled down to a temperature
at which the undercooled melt did not recrystallize yet. Start-
ing from that temperature a second heating run was performed,
again, up to a temperature well above the melting temperature.
To determine the heat capacities accurately, the measurement

6000 | ‘ : . . |
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Cp (J/mol K)
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Fig. B.1. The measured C p-curves of venlafaxine for a heating run (black trace)
starting at room temperature up to a temperature well beyond the melting tem-
perature (Tt,s = 348.1 K), followed by a cooling run down to a temperature at
which recrystallization did not occur (not shown). The second heating run (red
trace) for the undercooled melt was made again up to temperatures well beyond
the melting temperature; the deviations at low temperatures are an artifact of the
measurement.
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Fig. B.2. The solubility curves according to Eq. (26) for venlafaxine using Agyshyy; = 27.20kJ/mol and Ty, = 348.1 K. The heavy black curve represents the ideal
solubility case for which Ac(,), = 0. The green line shows the results for venlafaxine for which Ac(;, was determined to be 145 J/mol K. For comparison the blue curve
shows the case for Ac(}, = 200 J/mol K. The dashed black line indicates T,s. Figure (b) shows the corresponding van’t Hoff curves of (a).

was preceded by two runs using the same cups; one performed
for two empty cups and a second one for which one of the vessels
was loaded with Al O3 as areference sample. The final tempera-
ture dependence of the C p-value of venlafaxine was determined
using the equation

HFsample - HFempty M AL 05 Cpano(T), (52)
JALO3 U )

CP sample(] ) -
Al,O3 empty ”lsample

where HF is the measured heat flow as a function of the tem-
perature and m is the mass of the sample. The resulting curves
are shown in Fig. B.1. The deviations at low temperatures are
an artifact due to the non-reliable data obtained with the device
used at the start of any heating run. Undercooled venlafaxine
can be cooled down to a temperature of approximately 310 K
without solidification. The difference in heat capacity between
solid venlafaxine and its undercooled liquid phase turns out to
be almost independent of temperature over the entire range from

(a) 360 T

330

T (K)

300

270
0

0.2 0.4 0.6 0.8 1.0

310 K up to Tgys and is determined to be Ag_,1cp(T) = Ac(,), =
145 J/mol K. Using this value together with Tj,s = 348.1 K and
Agushyy = 27.20kJ/mol in Eq. (26), the effect of As_,1cp(T) on
the solubility can be calculated. In Fig. B.2 the results are shown.
The figure shows that for the case of venlafaxine the solubility
deviates considerably from the ideal solubility curve for which
AC?D = 0. Moreover, it shows that for somewhat larger values
for AC% retrograde solubility can occur within an accessible
temperature range.

As a second example, for naphthalene the same mea-
surement was performed, although its liquid phase could be
undercooled only some 10 degrees below its fusion tempera-
ture. In this case Ag_.jcp(T) is relatively small and slightly
increases with decreasing temperature. The estimated aver-
age value of As_1cp(T) ~ 20 J/molK leads only to a very
small deviation from the ideal solubility curve as can be seen
in Fig. B.3

(b) 0

-0.5

25U
0.0028

| |
0.0032 0.0036

1T (1/K)

Fig. B.3. The solubility curves according to Eq. (26) for naphthalene using Apshfy = 19.1kJ/mol and Tr,s = 353.4K. The heavy black curve represents the
ideal solubility case for which Ac?, = 0, the green line the case of naphthalene for which Ac(}, ~ 20J/mol K. For comparison the blue curve shows the case for
Ac(}, = 200 J/mol K. The dashed black line indicates Tt,s. Figure (b) shows the corresponding van’t Hoff curves of (a).
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Appendix C. Liquid-liquid separation

In the regular solution model discussed in Section 2.4, Fig. 8
a and b show a horizontal plateau in the solubility curves beyond
a critical positive value of A;eligth. For the corresponding tem-
perature the solubility curves have to be replaced by horizontal
lines in the (x, T) diagrams, resulting in the coexistence of an
A-rich and a B-rich solution in thermodynamical equilibrium
with the solid phase. The coexistence of two liquid phases is
also known as liquid-liquid (L-L) separation. Here, the ther-
modynamics behind L-L separation will be reviewed shortly.
In Fig. C.1 a and b the solubility curve according to Eq. (35)
for two of the curves in Fig. 8 b have been redrawn without
the horizontal lines. According to Egs. (32) and (35) the solu-
bility curve describes the dependence of the chemical potential
of the solute in the liquid phase, Afﬁigx UB, on the mole fraction
XB up to a constant. As a result of the minimum free energy in
thermodynamic equilibrium, it holds that

3G ol
(2> =(32) =0 (53)
ong P, Tinp "B P,T.na
(a) T T

600

590

T (K)

580

570

560

(c) 570 T T T

X 565 |- B

) 02 0.4 0.6 0.8 1.0
X

as has been demonstrated in detail by Landau and Lifshitz
(1959). The equality in Eq. (53) corresponds to a set of critical
points, that define the borders of an instable situation. Substitut-
ing Eq. (32) one obtains for this equality condition

_ 24mih
R
The corresponding curves, known as spinodals, have been
drawn as the green lines in the (x, T) diagrams of Fig. C.1 a and
b. Note, that these spinodals describe the behavior of the liquid
phase. In case of the presence of also a solid phase B, the critical
points intersect with the solubility curve at certain temperatures,
exactly in the extrema of the solubility curve. In between these
minimum and maximum values the slope of the solubility curves
is negative, which therefore corresponds to a thermodynamically
instable situation. The red curves in Fig. C.1 a and b correspond
to the values in the (x, T) diagram where ALY ug = 0 or, in
other words, the Gibbs free energy of mixing in the liquid phase
is minimal. These curves are defined by

T xg (1 — xg). 54)

1Ie;
AR h 2xp — 1 55)
R In(l1 —xg)—1Inxg
(b) T T T
1200 i
1000 |- -
<
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Fig. C.1. Two of the solubility curves (blue lines) of Fig. 8 b according to Eq. (35); Anshiy = 100 kJ/mol and Ty,s = 570 K. The red lines show the function of Eq.
(55), the green lines that of Eq. (54) for (a) A5 hg = 10kJ/mol and (b) A2 hg = 20 kJ/mol. Note, the different ranges for T in (a) and (b). The graphs (c) and (d)

mix mix

show an enlarged vertical scale for (a) and (b), respectively; in these graphs the metastable solubility lines are indicated as dotted black lines.
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and known as the binodals. For a liquid mixture without a solid
phase present, the binodal defines the region in the (x, T) dia-
gram below which L-L separation takes place. When also a
solid phase is present, in the present case the solid B, Gibbs’
phase rule restricts this region to a single temperature, which is
defined by the intersection between the binodal and the solubil-
ity curve. The values of xg of the two intersection points cannot
be determined in an analytical form because it involves a tran-
scendental equation. These have been determined numerically
for the parameters of Fig. C.1 a and b, leading to the Fig. C.1
c and d where the vertical scale has been blown up to show the
intersection points more clearly and the horizontal lines in the
corrected blue solubility curve have been added.!?

The binodal and spinodal in the present model are sym-
metrical in xp and xg. The top of both at xg = 1/2 is given
by

Areg h
T = Zmix” (56)
2R

Substituting this value in the solubility Eq. (35) one finds for

the critical value of A;ﬁth for L-L separation

A8 h= 4AfushE

2p = , 57
mixT T 2 02 — 1 + 2(Agushl/RTrus) ©D

which for the parameters of Fig. C.1 yields A;el‘igxh =9.392
kJ/mol, which is slightly smaller than the middle blue curve
in the figure.

In Section 2.5 an additional excess entropy was introduced
leading to a so-called quasi-regular solution model in the mean-
field approximation. For this model the binodal and spinodal are
still symmetrical in x4 and xg. The top of both at xg = 1/2 is
now given by

reg
T = A?;’i'?el‘;j:—}}l—ﬂe’ (58)
leading to a critical value of Aﬁigxh for L-L separation
A= 3y zquh;i(:fAAgggs/R) ’ (59)
- fushg/RTus)
For the parameters of Fig. 9 this leads to A:ﬁih =

15.040kJ/mol for A} s = 10J/mol K. This explains the
absence of a plateau, indicating L-L separation, in Fig. 9 a for
A2 h = 10kJ/mol and AL "85 = 10 J/mol K.

Summarizing, only at the temperature where the solubil-
ity curve intersects the binodal two liquid phases with mole
fractions corresponding to the intersection points are in ther-
modynamic equilibrium with the solid phase of the solute B.
For temperatures and mole fractions above the solubility curve

but below the binodal (red line) the liquid also separates in two

10 Note, that within the L-L separation interval for xp the areas of the deviating
solubility above and below the horizontal line are not equal, in contrast to the
well-known example of the liquid—gas phase equilibrium of, e.g. the van der
Waals equation, where the so-called "Maxwell equal area rule’ holds.

liquid phases, with no solid phase. For temperatures and mole
fractions above the binodal only a single liquid phase is present.
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